
Copyright c© 2019 by Robert G. Littlejohn

Physics 221B

Spring 2020

Notes 29

Helium and Helium-like Atoms†

1. Introduction

In these notes we treat helium and helium-like atoms, which are systems consisting of one

nucleus and two electrons. If the nuclear charge is Z = 2, then we are dealing with ordinary helium,

while Z = 3 is the Li+ ion, Z = 4 is the Be++ ion, etc. In recent years there has been some interest

in helium-like uranium, the ion U90+, with Z = 92, for tests of quantum electrodynamics. A case

not to be overlooked is Z = 1, a system consisting of a hydrogen nucleus plus two electrons. This

system certainly has unbound states, for example, the states in electron-hydrogen scattering. It is

not obvious that it possesses bound states, however, since it is not clear that one proton is capable

of binding two electrons. In fact, a bound state of this system does exist, the H− ion, which can

be thought of as an electron bound to an otherwise neutral hydrogen atom. The second electron

is rather weakly bound, as we shall see. The ion H− plays an important role in applications, for

example, in energy transport in stellar atmospheres. It is also used in proton accelerators to defeat

Liouville’s theorem in the process of filling up accelerating rings. In the following discussion of

helium-like atoms we focus mostly on the bound states, but some attention is also given to the

unbound states.

2. The Basic Hamiltonian

In these notes we work in atomic units, e = m = h̄ = 1. We place the nucleus of charge Z at

the origin of our system of coordinates and we let x1 and x2 be the positions of the two electrons.

Then the basic Hamiltonian describing the helium-like system is

H =
p2
1

2
+

p2
2

2
− Z

r1
− Z

r2
+

1

r12
, (1)

where r1 = |x1|, r2 = |x2|, and r12 = |x2 − x1|.
This Hamiltonian incorporates all the nonrelativistic, electrostatic effects in helium, but it omits

a number of small effects and makes some approximations. The approximation in the use of the

Hamiltonian (1) is numerically quite good, but there is some interesting physics in the neglected

† Links to the other sets of notes can be found at:
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terms and consideration of them leads to an improved understanding of some of the steps we take

in solving the approximate system.

First, the frame attached to the nucleus is not really an inertial frame, since the nucleus is pulled

by the electric forces from the electrons and accelerates somewhat in response. The accelerated

nucleus then has an effect back on the electrons, so that the overall effect is to couple the dynamics

of the electrons. However, since the mass of the nucleus is large in comparison to the mass of the

electron, the corrections, which are known as “mass polarization” terms, are small. See Prob. 16.4,

where it is shown that the coupling is proportional to p1 · p2. Similar corrections result from

ignoring the small difference between the true electron mass and the reduced mass of the electron

and the nucleus. Both these corrections are of order of the electron to nucleus mass ratio, which is

approximately 10−4 in helium.

Second, there are a variety of fine structure terms which, as in hydrogen, can be thought of as

relativistic corrections. These are all of order α2 or (Zα)2, and are roughly of order 10−3 to 10−4 in

helium. (But as in hydrogen, fine structure effects grow with Z, and are more important in heavier

atoms.) In addition to the relativistic kinetic energy correction, the Darwin term and the spin-orbit

term, all of which are present in hydrogen, there are also terms representing the interaction of one

electron with the magnetic field produced by the orbital motion of the other electron (spin-other-

orbit terms), or produced by the magnetic moment of the other electron (spin-spin terms). There

are also terms taking into account retardation in the communication between the two electrons.

Third, there are interactions with the quantized electromagnetic field, generalizations of the

Lamb shift in hydrogen.

Finally, there may be hyperfine interactions between the electron and the multipole moments

of the nucleus (but not in ordinary helium, since the α-particle has spin 0).

With the neglect of all these small terms, the basic helium-like Hamiltonian (1) is a purely

spatial operator, and does not involve the spin. Thus, it is similar in its level of approximation

to the electrostatic model of hydrogen. Due to the requirements of the symmetrization postulate,

however, spin plays a significant role in the structure of helium, much more so than in hydrogen at

a similar level of approximation.

3. Wave Functions and Hilbert Spaces

As explained in Sec. 18.3, the Hilbert space of a single electron can be written E = Eorb ⊗Espin,
where a basis in Eorb is the set of position eigenkets {|x〉} and a basis is Espin is the set of eigenkets

{|sm〉} of the operators S2 and Sz, where s =
1
2 and m = ± 1

2 . The quantum number s is constant

and can be suppressed if it is understood, so sometimes we write simply |m〉 for the spin eigenkets.

A basis in the total Hilbert space is the product basis {|xm〉} where |xm〉 = |x〉|m〉. A wave

function in the orbital Hilbert space Eorb is ψ(x) = 〈x|ψ〉, while one in the total Hilbert space E is

ψm(x) = 〈xm|ψ〉.
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In a system with two electrons the total Hilbert space is the product of two copies of the orbital

and spin Hilbert spaces for the two electrons,

Etot = E(1)
orb ⊗ E(1)

spin ⊗ E(2)
orb ⊗ E(2)

spin, (2)

where the numbers in parentheses are the labels of the two electrons. This is the “nominal” Hilbert

space discussed in Notes 28, that is, it consists of the wave functions that we would have if there

were no symmetrization postulate. A basis in Etot is the product of the bases in the constituent

spaces,

|x1m1〉(1)|x2m2〉(2) = |x1x2m1m2〉. (3)

If we rearrange the factors we can write the total two-electron Hilbert space as

Etot = Eorb ⊗ Espin, (4)

where

Eorb = E(1)
orb ⊗ E(2)

orb, (5a)

Espin = E(1)
spin ⊗ E(2)

spin (5b)

The factorization (4) is useful for the study of helium and many other systems with two identical

particles. A basis in Eorb is the set {|x1x2〉}, while there are two obvious bases in Espin, the uncoupled
and coupled,

{|m1m2〉} or {|SMS〉}, (6)

as explained in Sec. 28.8. Here S = 0 is the singlet state and S = 1 indicates the set of triplet states.

Equation (4) means that an arbitrary wave function in Etot is a linear combination of products

of wave functions in Eorb and those in Espin. In the special case that a wave function in Etot consists
of a single product of this type, we can speak of the “spatial part” and “spin part” of the wave

function. Such language is very common in discussions of helium and other two- or multi-particle

systems, but it is important to realize that it only applies to wave functions of a special type. The

reason such wave functions are relevant in the case of helium has to do with the exchange operators

that commute with the Hamiltonian (1).

4. Exchange Operators

The Hamiltonian (1) commutes with three exchange operators that we now define, in terms of

their action on the basis kets |x1x2m1m2〉 in Etot. These are

Eorb
12 |x1x2m1m2〉 = |x2x1m1m2〉, (7)

Espin
12 |x1x2m1m2〉 = |x1x2m2m1〉, (8)

E12|x1x2m1m2〉 = |x2x1m2m1〉. (9)

We will denote the eigenvalues of these three operators by eorb12 , espin12 , and e12, respectively.
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The Hamiltonian (1) commutes with Eorb
12 because it is a purely orbital operator that is sym-

metrical in the exchange of the two electrons. It commutes with Espin
12 because it is a purely orbital

operator that commutes with any spin operator. And in view of Eq. (10), the Hamiltonian (1) also

commutes with E12.

But the Hamiltonian (1) is only an approximation to the true Hamiltonian for helium. If we

include the fine structure terms, which as in hydrogen couple the spin and orbital degrees of freedom,

then the resulting Hamiltonian no longer commutes with Eorb
12 or Espin

12 separately.

It still commutes with E12, however, regardless of how many physical effects we include or how

many correction terms we add, because the two electrons are identical. All physical Hamiltoni-

ans that describe two electrons commute with E12; if this were not true, it would be possible to

distinguish the electrons.

The properties of these exchange operators follow immediately from their definitions. The

operators are all Hermitian and unitary, their square is 1 (the identity operator), and their eigenvalues

are ±1, as in Eqs. (28.3) and (28.4). They also satisfy

E12 = Eorb
12 E

spin
12 , (10)

and

[Eorb
12 , E

spin
12 ] = 0. (11)

Thus Eorb
12 and Espin

12 possess a simultaneous eigenbasis. Since E12 is a function of Eorb
12 and Espin

12 , any

simultaneous eigenspaces of Eorb
12 and Espin

12 is automatically an eigenspace of E12, with eigenvalue

e12 = eorb12 e
spin
12 . (12)

Since the set of operators (H,Eorb
12 , E

spin
12 ) are mutually commuting, they possess a simultaneous

eigenbasis. Here H is the Hamiltonian (1). Equivalently, we can organize the eigenstates of H so

that they are also eigenstates of Eorb
12 and Espin

12 .

To construct such eigenstates we start with Espin
12 . Let us use a capital Ψ to refer to states in

Etot and a lower case ψ for states in Eorb. Then an eigenstate of Espin
12 is the product

|Ψ〉 = |ψ〉|SMS〉, (13)

for any |ψ〉 ∈ Eorb, since
Espin

12 |Ψ〉 = σS |Ψ〉, (14)

where the eigenvalue espin12 = σS is defined by Eq. (28.45). The most general eigenstate of Espin
12 is a

linear combination of such states (13) with the same value of S.

Next, we make |Ψ〉 an eigenstate of H by requiring that the spatial part |ψ〉 of |Ψ〉 be an

eigenfunction of H , regarded as a purely orbital operator. That is, we must solve

H |ψ〉 = E|ψ〉, (15)
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or, in wave function language

Hψ(x1,x2) = Eψ(x1,x2), (16)

a purely orbital eigenvalue-eigenfunction problem. This is the hard part, something we shall devote

some attention to in these notes.

Then, to obtain an eigenfuction also of Eorb
12 , we note that if ψ(x1,x2) is a solution of Eq. (16),

then so is ψ(x2,x1), with the same energy. Thus we can form the wave functions

1√
2

[

ψ(x1,x2)± ψ(x2,x1)
]

, (17)

which, if they do not vanish, are eigenstates of Eorb
12 with eigenvalue eorb12 = ±1 (the same ± that

appears in Eq. (17)).

Finally, in view of Eq. (12), only those states that are symmetric under spatial exchange and

antisymmetric under spin exchange, or vice versa, are antisymmetric under total exchange E12, as

required by the symmetrization postulate. The physical subspace of the nominal Hilbert space is

the direct sum of the subspace with eorb12 = +1 and espin12 = −1, and the one with eorb12 = −1 and

espin12 = +1.

The situation regarding spatial and spin exchange symmetries is summarized in Table 1, which

also indicates some standard nomenclature. As in Table 28.1, “para” refers to a wave function that

is spatially symmetric, and “ortho” to one that is spatially antisymmetric under exchange. At one

time helium was thought to consist of two different species, parahelium and orthohelium, since the

spectrum of helium indicates two classes of energy levels with no (or only very weak) transitions

between them. Table 1 is almost exactly the same as Table 28.1, the main difference being that

in the case of the hydrogen molecule, it was possible to write down an explicit form for the spatial

part of the energy eigenfunctions, Eq. (28.33), since we had a central force Hamiltonian, whereas

in helium it is much more difficult to solve the spatial eigenfunction equation (15). (And in the

hydrogen molecule we had two identical protons, whereas in helium we have two identical electrons.)

eorb12 name espin12 e12 S degen name

+1 para −1 −1 0 1 singlet

−1 ortho +1 −1 1 3 triplet

Table 1. Linkage of spatial and spin exchange symmetry in helium and terminology.

In summary, we have derived the rule about helium eigenfunctions that most students learn in

first courses on quantum mechanics, namely, that these eigenfunctions are products of spatial wave

functions times spin wave functions with opposite symmetry under exchange. We saw the same rule

previously in connection with the hydrogen molecule.
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However, the true nature of this rule should be understood. First, the operators Eorb
12 and

Espin
12 do not have the same fundamental significance as the overall exchange operator E12. In

particular, there is no symmetrization postulate for Eorb
12 or Espin

12 . Next, the factorization of the

energy eigenfunctions into symmetric spatial parts and antisymmetric spin parts, or vice versa, arises

because H commutes with Eorb
12 and Espin

12 and because commuting operators possess simultaneous

eigenstates. If we had included the small fine structure corrections in the Hamiltonian (1), however,

then we would find that H no longer commutes with Eorb
12 or Espin

12 separately, although of course it

would still commute with E12. Thus, the usual rule about the factorization of the wave functions only

applies to the nonrelativistic, electrostatic approximation to the helium atom. This is in contrast to

the symmetrization postulate itself, which is rigorously correct.

5. Good Quantum Numbers

Sometimes an operator that commutes with the Hamiltonian is called a “good quantum num-

ber.” The terminology is old and it confuses an operator with its quantum number, but it is in

common use.

The helium Hamiltonian (1) is not exactly solvable nor even close to any exactly solvable system

(at least for small Z), so it is rather difficult to obtain good approximations to its eigenstates and

eigenvalues. In cases like this it is especially important to pay attention to the exact symmetries

of the Hamiltonian, that is, the operators that commute with it (the “good quantum numbers”).

Commuting operators possess simultaneous eigenbases, and, since symmetry operators are usually

easier to diagonalize than Hamiltonians, it is usually a good idea to diagonalize them first. This

means that we need only search in the eigenspaces of the symmetry operators for the eigenstates of

the Hamiltonian, a significantly easier task than searching in the whole Hilbert space. For example,

if we must diagonalize a matrix to find the energy eigenstates and eigenvalues, it is best to use a

symmetry-adapted basis (one that is already an eigenbasis of the symmetry operators). Even if

we do not attempt to find the eigenstates of the Hamiltonian explicitly, we can at least say that

those eigenstates are labelled by symmetry labels, namely, the quantum numbers of the symmetry

operators. This is a common situation for example in particle physics or nuclear physics, where

no one knows how to calculate the masses of the baryons or the energies of nuclear states very

accurately, but these states are rigorously characterized by their quantum numbers (spin, parity,

etc.)

For the helium Hamiltonian (1) we have already begun this process, by noting that H commutes

with Eorb
12 and Espin

12 , and by finding the simultaneous eigenbases of these two operators. This served

the dual purpose of narrowing the spaces in which we need to search for energy eigenstates, and of

satisfying the symmetrization postulate (by requiring e12 = −1).

But there are other symmetries of the Hamiltonian (1). Most notably, since H is a scalar

operator, it commutes with rotations. In fact, since it is a purely spatial operator, it commutes with

both spatial and spin rotations independently, and thus with L = L1 + L2 and S = S1 + S2. It
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does not, however, commute with spatial rotations of particle 1 or of particle 2 separately, because

the term 1/r12 in the Hamiltonian is only invariant when we rotate the positions of both particles

simultaneously. That is, H does not commute with L1 or L2 separately. The Hamiltonian does

commute with S1 and S2 separately, however, in fact, it commutes with any function of spin. But

as we have seen, the total spin S = S1 + S2 is more convenient to work with than the individual

spins because it is physical and commutes with Espin
12 , and because the coupled basis is an eigenbasis

of Espin
12 .

The Hamiltonian (1) also commutes with parity π, a purely spatial operator that acts on the

basis kets of the entire Hilbert space E by

π|x1x2m1m2〉 = | − x1,−x2,m1,m2〉. (18)

Parity flips the spatial coordinates of the particles but has no effect on spin (at least in nonrelativistic

quantum mechanics). We will not make much use of parity in the case of helium, but it is more

important in multielectron atoms.

Operator Eorb
12 Espin

12 E12 L2 Lz S2 Sz

Qu. Num. eorb12 espin12 e12 = −1 L ML S MS

Table 2. Operators that commute with the approximate helium Hamiltonian (1) and their corresponding quantum
numbers. The symmetrization postulate forces e12 = −1.

A list of operators thatH commutes with along with their quantum numbers is shown in Table 2.

Moreover these operators commute with each other. Thus, without knowing anything else about the

eigenstates of H , we can say that they are characterized by the quantum numbers of the operators in

the table. However, several of the quantum numbers are superfluous. For example, e12 is forced to be

−1 by the symmetrization postulate, so eorb12 and espin12 are opposite one another and not independent.

In fact, by Eq. (28.44) knowledge of S implies knowledge of espin12 and therefore knowledge of eorb12 .

Thus an independent set of quantum numbers is (LMLSMS). Within a simultaneous eigenspace

of the symmetry operators with the given quantum numbers, we can in principle diagonalize the

Hamiltonian, and label the energy eigenstates within that subspace by a sequencing number N .

Thus, the energy eigenstates can be denoted |NLMLSMS〉. As for the energy eigenvalues, they are

independent ofML andMS because of the rotational invariance of the Hamiltonian, so we can write

H |NLMLSMS〉 = ENLS |NLMLSMS〉. (19)

The energies ENLS are (2L + 1)(2S + 1)-fold degenerate, because of the freedom in the magnetic

quantum numbers.

You might suspect that the energies ENLS should also be independent of the total spin S, since

the Hamiltonian (1) is a purely spatial operator. That would be true if there were no symmetrization
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postulate, but in that case the quantum number eorb12 would not be superfluous, and, since eorb12 is a

spatial operator itself, the energies would depend on its eigenvalue. In fact, this is precisely what

happens in real helium where the symmetrization postulate is operative, it is just that the quantum

number eorb12 is not explicitly stated since it is determined by the value of S. In other words, in real

helium, the spin state specified by S determines the exchange symmetry of the spin part of the wave

function which determines the exchange symmetry of the spatial part of the wave function which

does affect the energy. Thus, the energy does depend on S, in spite of the fact that H is a purely

spatial operator.

In fact, the dependence of the energy on S is typically large, that is, of the order of a Coulomb

(electrostatic) energy, much larger than the (magnetic) energies associated with the explicitly spin-

dependent terms that we have neglected in Hamiltonian (1). This is because wave functions that are

symmetric or antisymmetric under spatial exchange have very different distributions of probability

in three-dimensional space, and therefore correspond to quite different Coulomb energies. We will

see this explicitly below when we analyze helium by perturbation theory. A similar phenomenon

occurs in ferromagnetism, where the energies involved in flipping spins (the magnetization of the

material) are much larger than can be accounted for by the magnetic interaction of arrays of magnetic

dipoles. This discrepancy in energy scales was known before quantum mechanics had matured, and

was regarded as a mystery. The true explanation was given by Heisenberg: when you flip spins,

you change the symmetry of the spin part of the wave function, which by the symmetrization

postulate forces changes in the spatial part of the wave function, which changes the Coulomb energy

of the charge configuration. Ferromagnets are more complicated because there is a large number of

particles, but the basic idea is the same as in helium.

In Table 2 we have listed all the obvious symmetries (except parity) of the basic helium Hamilto-

nian (1). Are there any more (not so obvious) symmetries? Sometimes a system does have additional

symmetries in addition to the obvious ones. Notably this happens in the case of hydrogen, which

has an SO(4) symmetry (only the SO(3) symmetry under spatial rotations is obvious). This extra

symmetry is responsible for the extra degeneracy of hydrogen, in comparison to other central force

problems. As we say, hydrogen has “hidden” symmetry. Another example with hidden symmetry is

the multidimensional, isotropic harmonic oscillator. Apart from these two examples, however, there

are very few systems in the real world with extra or hidden symmetry (it depends partly on your

definition of “hidden,” but you should not expect such symmetry in most problems). In particular,

helium has no extra symmetry beyond what we have listed.

The standard spectroscopic notation for the level ENLS is N2S+1L, where L is replaced by

one of the code letters, S, P , D, F , etc., for L = 0, 1, 2, 3, etc. As we did in our discussion of the

hydrogen molecule in Sec. 28.8, we use capital letters are used to represent the quantum numbers of

the collective system (in this case, the whole atom), and reserve lower case letters for the quantum

numbers of a single particle (in this case, an electron). For example, the state 23P is the state with

N = 2, S = 1 and L = 1. This is really a manifold of (2L+1)(2S+1) = 3×3 = 9 degenerate states.
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6. Ionization Potentials

So far we have succeeding in labeling the energy levels of helium-like atoms by their good quan-

tum numbers and determining their degeneracies, in the approximation given by Eq. (1), without

knowing much about the system apart from its symmetries. We now look at some experimental and

other facts about such atoms.

First we present some ionization potentials. The ionization potential of an atom is the energy

needed to remove one electron from the atom, assumed to be in its ground state, to infinity. If an

atom has several electrons, there are successive ionization potentials, as more and more electrons

are removed. The final state consists of a nucleus plus the electrons, all of which are at rest and at

an infinite distance from one other.

It is a matter of convention in most areas of physics to decide where on the energy axis E = 0

lies, since only energy differences are physically meaningful. (This is true as long as gravitational

effects are neglected. But in general relativity, the mass corresponding to energy by m = E/c2 has

a gravitational effect, so the absolute measure of energy is physically significant.) But it is common

in electrostatics to define the state of zero potential energy to be the one in which all charges are at

an infinite separation from one another. This is what we have done with the potential energy in the

Hamiltonian (1). If the kinetic energies also vanish, then we have a state of zero total energy. With

this convention for the state E = 0, the sum of all the ionization potentials of the atom (with a

minus sign) is the ground state energy of the atom. (Notice that we have not separated the protons

in the nucleus or transported them to infinity. We are using a convention that is convenient in

atomic physics, but perhaps not nuclear physics.)

-3

-2

0

continuum-1

E0 = −2.904

He++ + 2e−

He+ + e−

Fig. 1. Important energies of helium obtained from ion-
ization potentials. Energies are measured in atomic units.

-0.75

-0.5

-0.25 continuum

0

E0 = −0.528

H+ + 2e−

H+ e−

Fig. 2. Same as Fig. 1, but for H−. The energy scale is
down by a factor of 1/4 compared to helium.
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In the case of helium, the ionization potentials are

He → He+ + e− − 0.904 a.u.,

He+ → He++ + e− − 2.0 a.u.
(20)

The first ionization potential may be compared to that of hydrogen, which is 0.5 a.u. In fact, helium

has the highest ionization potential of any neutral atom. See Fig. 31.1. The second ionization

potential is easy to understand, since the He+ ion is a hydrogen-like atom, whose ground state

energy is −Z2/2 = −2 a.u. To calculate the first ionization potential, however, is a nontrivial

problem. In the case of H−, the ionization potentials are

H− → H+ e− − 0.028 a.u.,

H → H+ + e− − 0.5 a.u.
(21)

In H− the extra electron is only weakly bound to the neutral H atom.

Figures 1 and 2 illustrate the information obtained from the ionization potentials. The energy

E = 0 is the state of complete dissociation. The ground state energy of helium is E = −2.904 a.u.,

while the state in which one electron has been removed to infinity has energy E = −2 a.u. Once

this electron has been removed, it may be given any positive kinetic energy, so there is a continuous

spectrum above E = −2 a.u. In H−, the ground state energy is E = −0.528 a.u. and the continuum

begins at E = −0.5 a.u., the ground state energy of a neutral hydrogen atom.

-3.0

-2.9

-2.2

-2.1

-2.0

21S

31S

41S

21P

31P

41P

31D

41D

11S

23S

33S

43S

23P

33P

43P

33D

43D

Parahelium
(S = 0)

Orthohelium
(S = 1)

Fig. 3. Bound states of helium with quantum numbers. Energies are measured in atomic units. Notice the gap in the
energy scale between the ground state and the excited states.
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7. The Bound States

From Fig. 1 it is clear that the bound states of helium must lie between E0 = −2.904 a.u.

and E = −2 a.u. These bound states and their quantum numbers are displayed in Fig. 3 with an

expanded energy scale. The energy levels in the figure are the eigenvalues of the Hamiltonian (1),

which are not exactly the same as the experimental values due to the neglect of small terms in that

Hamiltonian. The difference, however, is too small to see on the scale of the diagram (in fact, at

higher resolution, many of these levels will be seen to have a fine structure splitting).

The levels in Fig. 3 cannot be regarded as purely experimental data, even at a scale where fine

structure is ignored and the Hamiltonian (1) is a good approximation, because spectroscopic data

only gives differences between energy levels, not their absolute values. It takes some disentangling of

the experimental data to produce energy levels. In addition, the levels in Fig. 3 have been assigned

quantum numbers, which requires some theoretical input. In effect, we have skipped ahead to the

answer (the spectrum of helium) in presenting Fig. 3. This may be the best way to understand

helium on a first pass.

In Fig. 3, the para states (spatially symmetric, spin singlet) are on the left, and the ortho

states (spatially antisymmetric, spin triplet) are on the right. Each vertical column contains the

energy levels for a given value of L and S, the good quantum numbers of the Hamiltonian (1). Only

columns out to L = 2 (D-states) are shown in the figure, but in actual helium L ranges from 0 to

∞. The levels in a given column are sequenced in ascending order by N , with certain conventions

for the starting value of N . In each column there is an infinite number of levels that accumulate

just below the continuum limit, much as in hydrogen. The energy levels in a given column are the

eigenvalues of the Hamiltonian (1), restricted to a simultaneous eigenspace of the operators L2, S2,

Lz and Sz (it being understood that we are within the antisymmetric eigenspace of the exchange

operator E12).

Notice the following qualitative features of the energy level diagram for helium. First, the

ground state is a singlet state (11S), which is considerably below the excited states (notice the gap

in the energy scale). The excited states look roughly the same on the para and ortho sides, but there

is no 13S state (no state on the ortho side that seems to correspond to the 11S state). Second, for a

fixed value of N and S, the energies are an increasing function of L (the “staircase effect”) (at least

this is true for N = 2 and most other values of N). This is the same effect we saw in alkali atoms.

Third, for fixed N and L, the ortho states are lower in energy than the para states (thus, if a 13S

state existed, we would expect it to be below the actual ground state 11S). Later we will provide a

theoretical explanation for some of these features.

In the case of H−, the ground state is the only bound state, and it has the quantum numbers

11S (same as the ground state of helium).
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8. Perturbation Analysis. The Unperturbed System

We now turn to the problem of finding the spatial eigenfunctions of the Hamiltonian (1), which

is a purely orbital operator. Denoting such an eigenfunction by ψ(x1,x2), we wish to solve

Hψ(x1,x2) = Eψ(x1,x2). (22)

In addition, we wish these eigenfunctions to be even or odd under orbital exchange,

Eorb
12 ψ(x1,x2) = ±ψ(x1,x2), (23)

where the±1 is eorb12 , the eigenvalue of Eorb
12 . As explained above, eorb12 = +1 are called para states, and

eorb12 = −1 are called ortho states. We know it is possible to construct simultaneous eigenfunctions

of H0 and Eorb
12 because they commute. Once we have found these eigenfunctions, it will be easy

to multiply them by spin states (singlet or triplet) of the opposite exchange symmetry to obtain an

overall eigenfunction of the Hamiltonian, including spin, that satisfies the symmetrization postulate.

This part is relatively easy; the hard part will be solving Eq. (22) as a purely orbital problem.

An obvious strategy for finding the eigenfunctions of the Hamiltonian (1) is to use perturbation

theory, in which the inter-electron Coulomb potential 1/r12 is taken as a perturbation. That is, we

write H = H0 +H1, where

H0 =
(p21
2

− Z

r1

)

+
(p22
2

− Z

r2

)

, (24a)

H1 =
1

r12
. (24b)

We have grouped the terms inH0 to emphasize thatH0 is the sum of two hydrogen-like Hamiltonians,

one for each electron, moving in the field of a nuclear charge Z. This decomposition of H into H0

and H1 is not very favorable for perturbation theory in the case of small Z, since the inter-electron

potential is comparable to the electron-nucleus potentials. The comparison is especially unfavorable

for H− (the case Z = 1). It gets better for larger Z. We do the perturbation analysis anyway, since

it is relatively straightforward and there are not many choices.

x

y

z
r1

r2

nucleus

e− e−r12

γ

Fig. 4. Coordinates for the nucleus and two electrons in space.
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It is obvious from Fig. 4 what the effect of the perturbation 1/r12 is. When it is switched off,

the two electrons no longer repel one another and settle in somewhat closer to the nucleus than

they would otherwise. The wave functions for the two electrons can be thought of as two clouds

that overlap in the neighborhood of the nucleus. Conversely, when we turn the perturbation on, the

electron clouds expand somewhat so the electrons can get away from one another. They also tend

to stay on opposite sides of the nucleus, for the same reason.

As usual in perturbation theory, we must understand the unperturbed system first, its eigen-

functions, degeneracies, and symmetries. Since H0 is a sum of two hydrogen-like Hamiltonians, the

(two-particle) eigenfunctions of H0 are products of single particle eigenfunctions of the hydrogen-like

Hamiltonians in the field of nuclear charge Z. We call these single-particle eigenfunctions orbitals.

They are central force eigenfunctions, and since we are only concerned with the spatial part here,

they are characterized by the usual central force quantum numbers (nℓm). Notice that we are using

lower case letters for the quantum numbers of a single electron. The single particle hydrogen-like

energy is −Z2/2n2. We denote these orbitals in ket language by |nℓm〉. Then the two-particle

eigenfunctions of H0 are products of these, which we denote by

|n1ℓ1m1〉(1)|n2ℓ2m2〉(2) = |n1ℓ1m1 n2ℓ2m2〉, (25)

where the numbers in parentheses indicate which of the two electrons (1 or 2) is referred to, and

where the right hand side is a shorthand notation for these states. These states depend on six

quantum numbers. They are eigenfunctions of H0,

H0|n1ℓ1m1 n2ℓ2m2〉 = E(0)
n1n2

|n1ℓ1m1 n2ℓ2m2〉, (26)

where the (0) on the energy indicates that it is the energy in zeroth order of perturbation theory.

This zeroth order energy is a sum of the two hydrogen-like energies,

E(0)
n1n2

= −Z
2

2

( 1

n2
1

+
1

n2
2

)

, (27)

and it depends only on the two principal quantum numbers n1 and n2.

The states (25) are eigenstates of H0, but not in general of Eorb
12 . However it is easy to construct

eigenfunctions of Eorb
12 simply by symmetrizing or antisymmetrizing under exchange. There are

two cases. In Case I, the two sets of single particle quantum numbers are equal (all of them),

(n1ℓ1m1) = (n2ℓ2m2) ≡ (nℓm), and we write simply

|nℓmnℓm〉 (28)

for these states. In this case the states are already even under orbital exchange, so they are para

states (eorb12 = +1). There are no ortho states in Case I.

In Case II, one or more of the two sets of quantum numbers are different, (n1ℓ1m1) 6= (n2ℓ2m2).

In this case we can easily write down normalized eigenstates of Eorb
12 ,

1√
2

(

|n1ℓ1m1 n2ℓ2m2〉 ± |n2ℓ2m2 n1ℓ1m1〉
)

, (29)
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where the eigenvalue is eorb12 = ±1. In this case we have both para and ortho states. The energy

does not change when we carry out this symmetrization or antisymmetrization because both terms

have the same energy. It is still given by Eq. (27), and it does not depend on the choice of the ±
sign. We now have a set of unperturbed energy eigenstates that are also eigenstates of Eorb

12 .

He+ + e−

−4

−3

−2

−1

0

para ortho

(1, 1)

(1, 2)

(1, 3)

(1,∞)

(2, 2)

(2, 3)

(2,∞)

(1, 2)

(1, 3)

(1,∞)

(2, 2)

(2, 3)

He++ + 2e−

(2,∞)

Fig. 5. Unperturbed energy levels of helium, that is, levels of the Hamiltonian (24a). The energy axis is vertical with
energies measured in atomic units, and levels are labeled by principal quantum numbers (n1, n2). The shaded area is
the continuum.

Figure 5 shows the energy levels of H0, with the para states on the left and ortho states on the

right. The levels are labeled by their principal quantum numbers (n1, n2).

Let us focus first on the levels below the shaded area in Fig. 5, that is, the levels lying below

the continuum threshold at E = −2 (all energies are in atomic units). These levels are called singly

excited states because one of the hydrogen-like orbitals is in the ground state (n1 = 1), while the

other (n2) takes on any value. The absolute ground state of H0 is the (1, 1) state with n1 = n2 = 1,

at an energy of −4. The ground state is on the para side; there is no analogous state on the ortho

side because this is Case I, described in the paragraph surrounding Eq. (28).

It is instructive to compare these levels with the exact bound states of helium, shown in Fig. 3.

One difference is that the levels in Fig. 3 are separated by the L quantum number, while those in

Fig. 5 are not. There is no point in separating the levels of Fig. 5 by the orbital angular momentum

quantum numbers because the hydrogen-like energies do not depend on them. Apart from that,

however, the two energy level diagrams are qualitatively similar. In particular, in both cases we
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have an infinite number of levels that accumulate at the continuum threshold E = −2.

Our analysis of the unperturbed system shows already why there is no 13S state in real helium: it

is because it would have to be a perturbed version of an antisymmetrized ground state wave function,

and the ground state wave function is spatially symmetric. On the other hand, the unperturbed

spectrum shows no evidence of the staircase effect (hydrogen energies do not depend on ℓ), and

there is exact degeneracy between the ortho and para sides (when a level exists on both sides). That

is, the unperturbed energies do not depend on the ± sign in Eq. (29), which represents the spatial

symmetry of the wave function. In addition, the unperturbed ground state is rather badly off in

energy, −4 instead of the exact value of −2.904. In fact, all the unperturbed energies are too low;

this is because the perturbation H1 in Eq. (24b) is a positive operator, and can only raise energies.

These differences between the unperturbed and exact spectra are clarified by perturbation theory.

9. The Doubly Excited States

Figure 5 shows something else, the so-called doubly excited states in which both orbitals have

principal quantum numbers > 1. The doubly excited series with n1 = 2 and n2 ≥ 2 is shown in the

figure (twice, once on the para side and once on the ortho side). There are other series (not shown),

with n1 = 3, 4, . . ..

Insofar as the unperturbed Hamiltonian H0 is concerned, these are discrete states imbedded in

the continuum. That is, a state such as the (2, 2) state is a bound state of H0 with a normalizable

wave function, but it exists at an energy that lies in the continuous spectrum of another set of

states, those with n1 = 1 and the second electron with a positive energy. The wave functions of the

continuum are products of the ground state wave function for the first electron times an unbound

hydrogen-like solution for the second electron (subsequently symmetrized or antisymmetrized to

obtain a definite exchange symmetry). These wave functions are not normalizable, as we expect in

the continuous spectrum.

What happens to these discrete, doubly excited states when the perturbation 1/r12 is turned on?

It turns out that they do not remain discrete states, instead they become coupled to the continuum

states of nearby energy, so the actual spectrum of helium above the continuum threshold E = −2 is

strictly continuous. There are no exact bound states of helium above this threshold.

Nevertheless, the exact system does in effect know about the doubly excited states of the

unperturbed system. Consider, for example, what happens when we direct a beam of photons of

some energy at helium atoms in the ground state. When the photon energy exceeds the ionization

potential of helium, 0.904 a.u., it may be absorbed by the atom and an electron ejected. The

electron emerges with an energy that is the difference between the photon energy and the ionization

potential. The experimental cross section for this reaction is shown in Fig. 6. One can see sharp

peaks or enhancements in the cross section, which correspond to the doubly excited states of helium.

One can view this reaction as a two-step process, γ + He → He∗ → He+ + e−, in which He∗ refers

to a doubly excited state.
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Fig. 6. Experimental cross section for the reaction γ +He → He+ + e−, as a function of photon energy. The peaks are
resonances corresponding to the doubly excited states of helium. See R. P. Madden and K. Codling, Astrophys. J. 141,
364(1965); and Robert D. Hudson and Lee J. Kieffer, Atomic Data 2, 205(1971).

This effect can be understood classically. The solar system has eight major planets that move in

approximately circular orbits that are stable on human time scales. Nevertheless, it is energetically

possible for Jupiter to move somewhat closer to the sun, moving into a lower energy state, and eject

all the other seven planets from the solar system. Will this ever happen? Modern chaos theory

indicates that it probably will, if we wait long enough, assuming that the motion of the planets is

governed by Newton’s laws and no other effects (such as the death of the sun or an encounter with

another star) intervene. Nevertheless, the solar system must be mostly stable for very long times,

since the earth has apparently been in approximately the same orbit for about 4× 109 years.

Whether or not the ejection of the major planets is possible, it certainly happens that Jupiter

and other planets have encounters with other (usually smaller) objects and cause them to be ejected.

This effect is deliberately exploited by spacecraft that are to leave the solar system (such as the

Mariner spacecraft).

In the case of the doubly excited states of helium, we can imagine the two electrons having a

close encounter, which causes one to drop into the ground state and the other to be ejected. Unlike

the case of the solar system, where Jupiter can move into any state of (continuous) lower energy,

the first electron must drop into one of the discrete energy levels allowed to it. This is why the
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actual ground state of helium is stable: the two electrons are interacting strongly all the time, but

there are no lower states for one of them to drop into. Apart from the effects of quantization, the

classical picture gives an idea of the mechanism in helium. In particular, depending on the two sets

of quantum numbers of the doubly excited state, it may take a long time for one electron to have

a close encounter with the other. This is like the long-time stability of the solar system. In this

case we have a state of the system that is nearly a stationary state, that is, an energy eigenstate. It

is not exactly a stationary state, however, instead it is a resonance, a state with a finite life time.

Resonances were examined in homework problem 7.3 in a simple one-dimensional example.

Helium can be raised into a doubly excited state by many methods, not only absorption of

photons but also collisions with electrons or other means. In all cases the doubly excited state He∗

exists for a period of time and then decays into the helium ion He+ and a free electron. This is

called the Auger process.

10. Perturbation Analysis of the Ground State

The ground state wave function of H0 is of the form (28), with (nℓm) = (100), that is, it is

the state |100 100〉. It is nondegenerate, so to compute the energy shift due to H1 in first order

perturbation theory we must compute

∆Egnd = 〈100 100|H1|100 100〉 =
∫

d3x1 d
3x2

|ψ100(x1)|2|ψ100(x2)|2
r12

, (30)

where we have written out the matrix element explicitly as an integral over the six-dimensional

configuration space and where the wave functions are hydrogen-like orbitals in the field of nuclear

charge Z.

The integral (30) has an interpretation in electrostatics. The squares of the wave functions

seen in that integral are probability densities for the two electrons in physical space, which may be

multiplied by the charges −e (= −1 in atomic units) to obtain charge densities. Then the integral

is the mutual energy of interaction of the two charge clouds. That is, if we imagine the two charge

clouds translated rigidly, starting at an infinite separation, then the integral is the energy required to

bring them into their final position where they overlap completely. Because the charge clouds repel

one another, this energy is positive. It is precisely the energy shift ∆E in first order perturbation

theory.

The hydrogen-like orbital for the ground state is

ψ100(x) =
(Z3

π

)1/2

e−Zr. (31)

To do the integral (30) we expand the Coulomb denominator,

1

r12
=

1

|x1 − x2|
=

∞
∑

ℓ=0

rℓ<

rℓ+1
>

Pℓ(cos γ), (32)
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where

r< = min(r1, r2), r> = max(r1, r2), (33)

and

γ = 6 (x1,x2). (34)

See Sec. 15.11. The angle γ is illustrated in Fig. 4. In addition we expand the Legendre polynomial

in Eq. (32) in terms of spherical harmonics, using the addition theorem (15.71). For our present

purposes we write this theorem as

Pℓ(cos γ) =
4π

2ℓ+ 1

∑

m

Yℓm(Ω1)Y
∗
ℓm(Ω2). (35)

Transforming the integral to spherical coordinates in both x1 and x2 and collecting all the

pieces, we have

∆Egnd =
Z6

π2

∫ ∞

0

r21 dr1

∫

dΩ1

∫ ∞

0

r22 dr2

∫

dΩ2 e
−2Z(r1+r2)

×
∞
∑

ℓ=0

rℓ<
rℓ+1
>

4π

2ℓ+ 1

∑

m

Yℓm(Ω1)Y
∗
ℓm(Ω2)

(36)

We do the Ω2 integral first, using the orthonormality of the Yℓm’s and the fact that Y00 = 1/
√
4π is

a constant,
∫

dΩ2 Y
∗
ℓm(Ω2) =

√
4π

∫

dΩ2 Y
∗
ℓm(Ω2)Y00(Ω2) =

√
4π δℓ0 δm0. (37)

The Kronecker deltas cause both sums to be replaced by the single term ℓ = m = 0. Then the Ω1

integration is easy,
∫

dΩ1 Y00(Ω1) =
√
4π. (38)

This leaves us with

∆Egnd = 16Z6

∫ ∞

0

r21 dr1S(r1), (39)

where S(r1) is the second integral,

S(r1) =

∫ ∞

0

r22 dr2
e−2Z(r1+r2)

r>
=

∫ r1

0

r22 dr2
e−2Z(r1+r2)

r1
+

∫ ∞

r1

r22 dr2
e−2Z(r1+r2)

r2
. (40)

These integrals are elementary and after some algebra we find

∆Egnd =
5

8
Z, (41)

or

E
(1)
gnd = −Z2 +

5

8
Z, (42)
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Atom Z E
(0)
gnd E

(1)
gnd Eexact

gnd

H− 1 −1 −0.375 −0.528

He 2 −4 −2.75 −2.904

Table 3. Comparison of ground state energies at zeroth and first order of perturbation theory with the exact ground
state energies, for H− and He.

where the (1) means the energy correct to first order of perturbation theory. Evidently perturbation

theory is developing a series in inverse powers of Z.

Table 3 shows a numerical comparison of the ground state energies of helium and H−, as

estimated from the unperturbed system and from first order perturbation theory. It will be seen

that the first order correction does close the gap between the calculated energy and the true energy,

but it overshoots the mark and ends up being too high.

If we did not know the exact ground state energy, what would we make of this estimate from

first order perturbation theory? For example, do we have any idea how far away it might be from

the true ground state energy, or whether it is even too high or too low?

We know that the variational principle always gives us an upper bound to the ground state

energy. It turns out that the estimate from first order perturbation theory can be interpreted as

a variational estimate, and that it is, therefore, an upper bound. The trial wave function that

makes this identification is the unperturbed eigenfunction, which in this case is nondegenerate. See

Prob. 27.3. But perturbation theory alone does not give a lower bound, so we are somewhat in

the dark as to how far away our estimate is from the true ground state. In practice we can get

information about this by applying variational estimates with more and more sophisticated trial

wave functions, and observing the numerical convergence. This is not rigorous, but often it works

well enough.

In this example we do have a lower bound, namely, the ground state of H0, which is −4. This

is not very close to the true ground state, nor can we improve the estimate as we can with the

variational method, by choosing better trial wave functions. There are methods of getting lower

bounds that can be improved, which we do not consider here.

Even without knowing how far away we are from the true ground state, however, an upper

bound can be useful for some purposes. Consider, for example, the H− ion. It is not obvious

on physical grounds that this exists as a bound state. If it were not known experimentally that

it does exist, how could we prove it theoretically? One way is to find a trial wave function that

gives an upper bound to the ground state energy that lies below the continuum threshold, which

is −0.5 a.u. Unfortunately, our estimate from first order perturbation theory, −0.375 a.u., lies above

this threshold, so we do not have a theoretical proof of the existence of H−. But we should keep

this example in mind later when we apply the variational method to helium-like atoms.
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11. Perturbation Analysis of the Excited States

We now apply perturbation theory to the excited states of helium, concentrating on the bound

states. We need consider only the singly excited states, since, as noted, the doubly excited states

are already above the continuum threshold, and the perturbation can only raise the energies. We

will set (n1, n2) = (1, n) for the singly excited states, so the unperturbed energy is

E
(0)
1n = −Z

2

2

(

1 +
1

n2

)

. (43)

We will be interested in the case n ≥ 2. We write the unperturbed energy eigenstates as

|NLM±〉 = 1√
2
(|100nℓm〉 ± |nℓm 100〉), (44)

where we use the notation (25) for the products of hydrogen-like orbitals. This is case II, shown

in Eq. (29). The ± sign on either side is the eigenvalue of Eorb
12 , the orbital exchange operator. As

for the notation NLM , we are using capital letters for the quantum numbers of all the electrons in

the atom, and lower case letters nℓm for the quantum numbers of a single electron. For example,

L is the quantum number of the operator L2 = (L1 + L2)
2. But for singly excited states the entire

angular momentum comes from the second electron, since the first electron is in the ground state

for which ℓ = 0. Thus in Eq. (44) it is understood that L = ℓ, M = m and N = n. For example,

the state with N = 2, L = 1 and eorb12 = −1 is the unperturbed version of the 23P state in helium.

Whether we write nℓm or NLM depends on which aspect of the problem we wish to emphasize. In

any case, notice that the notation |NLM±〉 contains quantum numbers of the orbital observables

in Table 2 that commute with the entire Hamiltonian H0 +H1. That is, we are using a symmetry

adapted basis for studying the perturbation.

The unperturbed eigenstates (44) are degenerate, since the unperturbed energy depends only

on the quantum number N = n, and we should think about degenerate perturbation theory. But in

the basis |NLM±〉 we need not diagonalize any matrices, since H1 commutes with all the operators

of the complete set of commuting observables that specify the unperturbed basis vectors inside a

degenerate eigenspace of the unperturbed Hamiltonian, that is, the operators L2, Lz and Eorb
12 .

Therefore the energy shifts are given by the diagonal matrix elements,

∆ENL± = 〈NLM±|H1|NLM±〉. (45)

The energy shifts do not depend on M because of the Wigner-Eckart theorem and the fact that H1

is a scalar operator, but they do depend on all the other quantum numbers NL±, as we shall see.

Substituting Eq. (44) into Eq. (45) we have

∆ENL± =
1

2
[(〈100nℓm|H1|100nℓm〉+ 〈nℓm 100|H1|nℓm 100〉)

±(〈100nℓm|H1|nℓm 100〉+ 〈nℓm 100|H1|100nℓm〉)].
(46)
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But the pairs of matrix elements inside the round parentheses are equal, as we see by writing them

out as spatial integrals and swapping x1 and x2, so we have

∆ENL± = Jnℓ ±Knℓ, (47)

where

Jnℓ = 〈100nℓm| 1

r12
|100nℓm〉, (48)

Knℓ = 〈100nℓm| 1

r12
|nℓm 100〉. (49)

The integrals Jnℓ and Knℓ are called the direct and exchange integrals, respectively. As for the

direct integrals, if we write them out explicitly as a integrals over the configuration space of the two

electrons, using the hydrogen-like orbitals ψnℓm(x), we have

Jnℓ =

∫

d3x1 d
3x2

|ψ100(x1)|2|ψnℓm(x2)|2
|x1 − x2|

. (50)

This has the interpretation as the mutual electrostatic energy of the two electron clouds associated

with orbitals (100) and (nℓm), exactly as in the integral (30), which applies to the ground state of

helium. In fact, that integral is a direct integral itself, with (nℓm) = (100). The direct integrals Jnl

are obviously real and positive.

As for the exchange integrals, they are

Knℓ =

∫

d3x1 d
3x2

ψ∗100(x1)ψ
∗
nℓm(x2)ψnℓm(x1)ψ100(x2)

|x1 − x2|
. (51)

These are also real, as is easily shown by swapping the variables of integration x1 and x2. It can

also be shown that the exchange integrals are positive. We will omit the proof of this fact since it is

not particularly illuminating, but we note that it is plausible that Knℓ should be positive, since the

denominator makes the integrand large in regions of the six-dimensional configuration space where

x1 ≈ x2. But in such regions, the numerator is approximately

|ψ100(x)|2|ψnℓm(x)|2, (52)

where x ≈ x1 ≈ x2. That is, the numerator is positive in such regions. (The rigorous proof that

Knl > 0 is given in an appendix to Slater’s books on atomic physics.)

The fact that Knℓ is positive has a simple physical interpretation, however. Since the energy

shifts (47) are Jnℓ ±Knℓ, it means that the ortho states (with the − sign) are lower in energy than

the para states (with the + sign). This is one of the qualitative features of the exact spectrum of

helium noted in Sec. 7. One can understand why this is so as follows. Let Ψ(x1,x2) be the wave

function of the two electrons. For ortho states, Ψ(x1,x2) = −Ψ(x2,x1). But when x1 = x2, this

means Ψ = 0. For ortho states, the two-electron wave function vanishes when the two electrons are

on top of each other, that is, the wave function has a node at x1 = x2. For para states, on the
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other hand, the wave function has an anti-node, that is, it is a maximum at x1 = x2. (In using the

words “node” and “anti-node” we are applying one-dimensional terminology to the six-dimensional

problem at hand, but the terminology does convey the right idea.) But since the electrons repel one

another and do not like to be on top of one another, the electrostatic energy of interaction is larger

in para states than in ortho states.

J20

2K20

21S

23S

1s2p

J21

2K21

21P

23P

1s2s

Fig. 7. Effect of the perturbation 1/r12 on the N = 2 levels of helium. Diagram is schematic and not to scale, but it

does show the correct ordering of the N = 2 levels in real helium, that is (from lowest to highest), 23S, 21S, 23P , 21P .

A schematic illustration of the effects of the perturbation on the N = 2 levels of helium is

given in Fig. 7. The unperturbed levels are labeled with the quantum numbers of the hydrogen-

like orbitals that enter into the unperturbed wave functions, that is, 1s2s and 1s2p. Such a list

of central force quantum numbers for individual electrons is called an electron configuration of the

atomic state. In the same notation, the ground state is given the configuration 1s2 (both electrons

are in the 1s orbital). Notice, however, that the electron configuration applies rigorously only to

the unperturbed wave function. For example, although we say that the electron configuration in

the ground state of helium is 1s2, or that that of the N = 2 levels is 1s2s or 1s2p, nevertheless the

exact wave functions are not products of single electron orbitals (in the case of the ground state) or

symmetrized or antisymmetrized products (in the case of the excited states). This is because the

perturbation changes the wave functions.

A qualitative feature shown in Fig. 7 is the fact that the direct integrals Jnℓ are an increasing

function of ℓ. This is responsible for the “staircase effect,” that is, the fact that the P levels are

higher than the S levels. A similar effect can be seen in the alkalis (see Fig. 17.3 for the case of

sodium), and the explanation is the same: as the angular momentum of one electron is increased,

it moves further away from the nucleus, and the nuclear charge is more effectively screened by the

other electron(s) (one, in the case of helium; the core electrons, in the case of the alkalis).

We see that all the qualitative features of the excited states of real helium, discussed in Sec. 7,

are explained by perturbation theory. These are the absence of any 13S state; the fact that the

ortho states are lower in energy than the singlet states; and the fact that the energy is an increasing

function of L (the staircase effect). From a quantitative standpoint, however, perturbation theory,

as we have outlined it, is less satisfactory, which is why we do not attempt to evaluate the direct and

exchange integrals explicitly. The variational method does better from a quantitative standpoint.
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12. Variational Treatment of Ground State

The unperturbed ground state was represented in ket language in Sec. 10 as |100 100〉. In wave

function language it is the product of two hydrogen-like ground state orbitals (see Eq. (31)),

Ψ1s2(x1,x2) =
Z3

π
e−Z(r1+r2). (53)

where the subscript 1s2 refers to the electron configuration of the ground state. The unperturbed

energy (−4) is rather badly off. The reason was explained in Sec. 8: the two electrons repel one

another, and the true charge cloud stays somewhat further away from the nucleus than indicated by

Eq. (53).

Equivalently, we can say that each electron partially screens the nucleus from the other, so that

each electron sees an effective nuclear charge Ze that is somewhat less than the true nuclear charge

Z. Since only one electron is doing the screening and the screening is only partial, we would expect

any reasonable measure of Ze to lie between Z − 1 and Z. This suggests that we use as a trial wave

function the product of two hydrogen-like ground-state orbitals in a Coulomb field with effective

charge Ze, that is,

Ψtrial(x1,x2) =
Z3
e

π
e−Ze(r1+r2), (54)

where we treat Ze as a variational parameter. In accordance with the variational method we will

minimize the expectation value of the energy with respect to Ze, and thereby determine Ze. This is

an example of how we can use physical reasoning to choose a trial wave function. We will write the

wave function (54) in ket language as |100 100(Ze)〉.
The trial wave function (54) is already normalized, so we do not need any Lagrange multipliers

(see Sec. 27.5). We merely need to calculate the expectation value of H . To do this we write H in

the form,

H =
(p21
2

− Ze

r1

)

+
(p22
2

− Ze

r2

)

+ (Ze − Z)
( 1

r1
+

1

r2

)

+
1

r12
, (55)

where we have added and subtracted terms to cause the appearance of two single-particle, hydrogen-

like Hamiltonians with nuclear charge Ze.

The expectation value of the first major term in Eq. (55) with respect to the trial wave function

is

〈100 100(Ze)|
(p21
2

− Ze

r1

)

|100 100(Ze)〉

= 〈100(Ze)|(1)〈100(Ze)|(2)
(p21
2

− Ze

r1

)

|100(Ze)〉(1)|100(Ze)〉(2), (56)

where we have factored the two-particle wave function into a product of two single-particle orbitals,

and where the numbers in parentheses indicate which particle is referred to. But the operator in

the middle depends only on the coordinates of particle 1, so the bra and the ket referring to particle
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2 just combine to give their normalization, which is 1. Thus the two-particle matrix element (56)

reduces to a single-particle matrix element,

〈100(Ze)|
(p2

2
− Ze

r

)

|100(Ze)〉 = −Z
2
e

2
, (57)

where we drop the (1) superscripts and 1 subscripts, since the coordinates x1 of the remaining

particle are just dummy variables of integration. This is the expectation value of a hydrogen-like

Hamiltonian with effective charge Ze with respect to its own ground state, which is just the ground

state energy with the same effective charge, as shown. The expectation value of the second major

term in Eq. (55) proceeds similarly, and gives the same answer, doubling the contribution (57).

As for the third major term in Eq. (55), we will need the expectation value of 1/r1 with respect

to the trial wave function. This is

〈100 100(Ze)|
1

r1
|100 100(Ze)〉 = 〈100(Ze)|(1)〈100(Ze)|(2)

1

r1
|100(Ze)〉(1)|100(Ze)〉(2)

= 〈100(Ze)|
1

r
|100(Ze)〉 = Ze, (58)

where we proceed as in the previous paragraph to reduce the two-particle matrix element to a

one-particle matrix element, and where we use Eq. (24.39) for the final expectation value (with

Z replaced by Ze and n = 1). The expectation value of 1/r2 proceeds similarly, and doubles the

answer. Overall, the expectation value of the third major term in Eq. (55) is

2(Ze − Z)Ze = 2Z2
e − 2ZZe. (59)

As for the final term in Eq. (55), the inter-electron potential 1/r12, this depends on the coor-

dinates of both particles and so its expectation value cannot be reduced to a single-particle matrix

element as in the case of the other terms. However, the expectation value in question is the same

one we calculated earlier in our perturbation analysis of the ground state (in Sec. 10) except for the

replacement of Z by Ze. Therefore the answer follows immediately from Eq. (41),

〈100 100(Ze)|
1

r12
|100 100(Ze)〉 =

5

8
Ze. (60)

Adding up the pieces, we have

〈100 100(Ze)|H |100 100(Ze)〉 = Z2
e − 2ZZe +

5

8
Ze ≡ F (Ze). (61)

We wish to minimize F (Ze) with respect to Ze. We have

dF

dZe
= 2(Ze − Z) +

5

8
, (62)

which has the root

Ze = Z − 5

16
. (63)
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We see that by the variational criterion of the best trial wave function, each electron screens 5/16

of a nuclear charge from the other electron. The variational estimate for the ground state energy is

F (Ze) where Ze is given by Eq. (63). This is

Evar
gnd = −Z2 +

5

8
Z − 25

256
. (64)

The first two terms agree with the results of first order perturbation theory, Eq. (42), but with

correction which is negative. Since the variational result is an upper limit to the ground state

energy, we see that

Eexact
gnd < Evar

gnd < E
(1)
gnd, (65)

where the (1) superscript refers to the results of first order perturbation theory, as in Eq. (42).

Atom Z Ze E
(0)
gnd E

(1)
gnd Evar

gnd Eexact
gnd

H− 1 11
16 −1 −0.375 −0.473 −0.528

He 2 1 11
16 −4 −2.75 −2.848 −2.904

Table 4. Comparision of ground state energies of He and H−, calculated by both perturbation theory and the variational
method, with the exact ground state energies.

Table 4 summarizes the results of both perturbation theory and the variational method for the

ground states of He and H−. In the case of helium we see that the variational method has closed

about two thirds of the distance between the results of first order perturbation theory and the exact

ground state energy. In the case of H− the variational result is disappointing, in that the estimate of

the ground state energy (−0.473) is still above the continuum threshold of −0.5. If we did not know

that H− exists as a bound state, we would not yet have a theoretical proof that it does. To give

that, it would be necessary to find a more complicated trial wave function (with more or different

parameters), such that the expectation value of the energy would be less than −0.5. From a physical

standpoint, it is clear what is wrong with our trial wave function (54): it does not incorporate the

tendency of the electrons to stay on opposite sides of the nucleus, that is, it does not incorporate

any correlation in the positions of the two electrons. With a trial wave function that does take this

effect into account, it is possible to obtain a variational estimate that is less than −0.5, thereby

providing a theoretical proof of the existence of H− as a bound state.

The variational method has been applied to the ground state of helium and helium-like atoms

with much more sophisticated and complicated trial wave functions than we have considered here.

The original calculations along these lines were carried out by Hylleraas, and with modern computers

it is possible to go much further. By such means the ground state energy of the Hamiltonian (1)

for Z = 2 and other values of Z has been obtained to many significant figures. The accuracy

obtained is far beyond that needed to show the difference between the ground state energy of the
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Hamiltonian (1) and the experimental ground state energy of helium, which are not equal because

the Hamiltonian (1) omits a number of small effects, as discussed in Sec. 2.

Problems

1. The bound states of helium are shown in Fig. 3.

(a) How would this diagram be different if the electron were a spin 0 particle? If it were a spin 3
2

particle? You do not need to be quantitative, but if some levels go up or down, say which ones and

which way. If some levels appear or disappear, say which ones. What are the degeneracies of the

levels in actual helium? What would they be if the electron were a spin-0 particle?

(b) The electric dipole operator for a multielectron atom is defined by Eq. (23.12), where the charges

are the electrons (with q = −e). Electric dipole transitions between two states are governed by the

matrix element of the electric dipole operator between the states in question. Explain why there are

no electric dipole transitions between ortho and para eigenstates of the Hamiltonian (1).

Remark: The eigenstates of the Hamiltonian (1) are not exactly the eigenstates of real helium

because of the neglect of small terms, notably, the fine structure terms. When these are included,

it turns out that electric dipole transitions are allowed between ortho and para states, but the

amplitude is small and the lines are very weak. For this reason, it was thought at one time on

spectroscopic grounds that parahelium and orthohelium were two different species of helium. The

weak spectral lines connecting the ortho and para states are called “intercombination lines.”

2. This problem was borrowed from Eugene Commins. Consider a simple “one-dimensional” hydro-

gen atom that obeys the equation,

−1

2

∂2ψ

∂x2
− Zδ(x)ψ = Eψ. (66)

[Units such that m = h̄ = 1, and the Coulomb potential is replaced by −Zδ(x)].

(a) Find the ground state energy and wave function ψ0(x), and verify that

〈T 〉 = −E = −1

2
〈V 〉. (67)

(b) Now consider the one-dimensional “helium” atom which obeys

Hψ(x1, x2) = −1

2

∂2ψ

∂x21
− 1

2

∂2ψ

∂x22
− Zδ(x1)ψ − Zδ(x2)ψ + δ(x1 − x2)ψ = Eψ, (68)

where x1, x2 are the coordinates of the two “electrons” on the x-axis. First treat δ(x1 − x2) as a

perturbation and find the ground state energy to first order. Compare to 3-dimensional helium.
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(c) Now employ the variational method with a trial wave function analogous to that used in class for

the ground state of 3-dimensional helium. Find the best value of 〈H〉 and compare to 3-dimensional

helium.

(d) For one-dimensional “helium,” take a trial wave function of the form

ψ(x1, x2) = u(x1)u(x2), (69)

where u(x) is the variational parameter (that is, the whole function, as in Hartree theory). Assume

u(x) is real; there is no loss of generality in this. Find an equation for u(x). It will be a kind

of Hartree equation, and it will contain a pseudo-energy eigenvalue, call it ǫ. Define ǫ so that the

equation looks like

−1

2
u′′(x) + . . . = ǫu(x), (70)

where the ellipsis indicates omitted terms.

(e) The desired solution must be normalizable (in fact, we demand that it be normalized), so we

must have

lim
x→±∞

u(x) = 0. (71)

Show that this can only be satisfied if ǫ < 0. Hint: To solve the equation, make the change of

notation, u→ x, x→ t, and interpret it as a one-dimensional problem in classical mechanics.

(f) Find the normalized solution u(x) and the pseudo-eigenvalue ǫ.

(g) Find the variational estimate of the ground state energy of one-dimensional “helium”. Hint:

Note that

〈H〉 = 2ǫ− 〈δ(x1 − x2)〉. (72)

Does your new estimate improve on the results of part (a)? Would you expect it to do so?

3. A problem on the excited states of helium.

(a) The exchange integral Knℓ defined in Eq. (51) depends on two hydrogen-like orbitals. It is

easily generalized to any two single-particle orbitals (recall that “orbital” means a single-particle

wave function). Show that if the two orbitals have no spatial overlap, then the exchange integral

vanishes. Then use your knowledge of hydrogen-like orbitals to explain the dependence of the

exchange integral on n for fixed ℓ, and on ℓ for fixed n.

(b) Go to http://physics.nist.gov/PhysRefData/ASD/levels form.html and

check your predictions using the experimental data on the first several excited states of helium.

Enter “He I” for the atom (this is neutral helium). You will see that some of the levels have a fine

structure, which we did not discuss in detail in class. This should not prevent you from checking

your predictions.


