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Elements of Atomic Structure

in Multi-Electron Atoms

1. Introduction

In these notes we combine perturbation theory with the results of the Hartree-Fock calculation

outlined in Notes 31 to obtain a basic qualitative and semi-quantitative understanding of the low-

lying energy levels and energy eigenfunctions in multi-electron atoms. We concentrate on the ground

state configuration of low-Z atoms where LS-coupling is applicable. The presentation in these notes

is based on the book Intermediate Quantum Mechanics by Bethe and Jackiw.

In these notes we continue with the custom of using the capital letters L, S and J for the

quantum numbers of the whole atom, while reserving lower case letters ℓ, s, j for those of a single

electron.

2. Summary of the Results of Hartree-Fock Theory

In Notes 31 we found a variational estimate to the ground state of the basic N -electron atom

Hamiltonian (31.1), reproduced here:

H =
N
∑

i=1

(p2i
2

−
Z

ri

)

+
∑

i<j

1

rij
. (1)

We denote the estimate for the ground state by |Φ〉; it is a Slater determinant composed of N single

particle orbitals, |λ〉, λ = 1, . . . , N , as in Eq. (31.39). The individual orbitals are a product of a

spatial part times a spin part, |λ〉 = |uλ〉|msλ〉, where uλ(r) = 〈r|uλ〉 is the spatial wave function

and |msλ〉 is an assignment of spins (up or down) to each orbital. Once the Hartree-Fock equations

have been solved, the orbitals specify the self-consistent direct and exchange potentials, Vd(r) and

Vex(r, r
′), according to Eqs. (31.91) and (31.92), where the exchange “potential” is really the r-space

kernel of the operator that we call a potential.

We assume that these potentials have been averaged over spatial and spin rotations, as described

in Sec. 31.16, which causes Vd and Vex to be replaced by V̄d and V̄ex, as in Eqs. (31.100) and (31.101).

The spatial parts of the orbitals are then solutions of the pseudo-Schrödinger equation

huλ(r) = ǫλuλ(r), (2)



2 Notes 32: Atomic Structure in Multi-Electron Atoms†

where the effective single-particle Hamiltonian is

h(r,p) =
p2

2
−

Z

r
+ V̄d(r)− V̄ex, (3)

Here we denote the exchange potential, as an operator, by simply V̄ex, recognizing that it is actually

an integral transform.

Since the single-particle Hamiltonian h is rotationally invariant, the single-particle orbitals |λ〉

are characterized by the standard set of central field quantum numbers for an electron, that is,

(nℓmℓms). Also, the spatial part of the orbitals is given by

uλ(r) = Rnℓ(r)Yℓmℓ
(θ, φ), (4)

for some radial wave functions Rnℓ(r) that are determined by solving the pseudo-Schrödinger equa-

tion (2). Each orbital |λ〉 is associated with an energy ǫλ = ǫnℓ, an eigenenergy of the Hamiltonian

h(r,p) that only depends on the quantum numbers n and ℓ, as usual for a central force problem.

The orbitals |λ〉 that go into the Slater determinant Φ must be linearly independent, so the

quantum numbers λ = (nℓmℓms) of the orbitals must be distinct. Since the orbitals are eigenstates

of the single-particle Hamiltonian h, they are, in fact, orthonormal. The Hamiltonian h has an

infinite number of eigenstates, so we must choose N of them to form the Slater determinant and

to compute the self-consistent potentials Vd and Vex while carrying out the iteration to solve the

Hartree-Fock equations. When we obtain the Hartree-Fock estimate for the energy, the result will

depend only on the quantum numbers (nℓ), and not on the magnetic quantum numbers (mℓ,ms).

Equivalently, the estimate for the energy will depend only on the number of occupied orbitals in

each subshell. As explained in Sec. 31.16, the list of occupation numbers is called the electron

configuration.

Atom Z Config

H 1 1s
He 2 1s2

Li 3 1s2 2s
Be 4 1s2 2s2

B 5 1s2 2s2 2p
C 6 1s2 2s2 2p2

N 7 1s2 2s2 2p3

O 8 1s2 2s2 2p4

F 9 1s2 2s2 2p5

Ne 10 1s2 2s2 2p6

Na 11 1s2 2s2 2p6 3s
Mg 12 1s2 2s2 2p6 3s2

Atom Z Config

K 19 [Ar] 4s
Ca 20 [Ar] 4s2

Sc 21 [Ar] 3d 4s2

Ti 22 [Ar] 3d2 4s2

V 23 [Ar] 3d3 4s2

Cr 24 [Ar] 3d5 4s
Mn 25 [Ar] 3d5 4s2

Fe 26 [Ar] 3d6 4s2

Co 27 [Ar] 3d7 4s2

Ni 28 [Ar] 3d8 4s2

Cu 29 [Ar] 3d10 4s
Zn 30 [Ar] 3d10 4s2

Atom Z Config

Fr 87 [Rn] 7s
Ra 88 [Rn] 7s2

Ac 89 [Rn] 6d 7s2

Th 90 [Rn] 6d2 7s2

Pa 91 [Rn] 5f2 6d 7s2

U 92 [Rn] 5f3 6d 7s2

Np 93 [Rn] 5f4 6d 7s2

Pu 94 [Rn] 5f6 7s2

Am 95 [Rn] 5f7 7s2

Cm 96 [Rn] 5f7 6d 7s2

Bk 97 [Rn] 5f9 7s2

Cf 98 [Rn] 5f10 7s2

Table 1. Electron configurations for some atoms. [Ar] refers to the argon core, 1s2 2s2 2p6 3s2 3p6, while [Rn] refers to

the radon core, [Ar] 3d10 4s2 4p6 4d10 4f14 5s2 5p6 5d10 6s2 6p6.
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Different choices of electron configuration lead to different estimates of the ground state energy;

we must choose the one that gives the smallest estimate. This gives the electron configuration for the

ground state of the atom, as tabulated in references (for example, periodic tables of the elements). As

we move from one atom to the next, the sequence of electron configurations reveals a filling sequence,

that is, a sequence of subshells that are filled. See Table 1. For atoms of small Z, the sequence

proceeds like this: 1s, 2s, 2p, 3s, etc. However, for heavier atoms there may be some competition

between subshells, for example, in the transition elements the 4s and 3d subshells have nearly the

same energy, so as we move from one element to the next, the next electron may go into the 3d or

4s subshell, whichever is energetically favorable, or it may go into the 3d subshell while borrowing

another electron from the 4s subshell. This phenomenon was explained in terms of the exchange

energy in Sec. 31.13. Thus in the case of atoms of small Z the electron configuration for the ground

state consists of a series of complete subshells plus a final subshell that may be incomplete, for

example, carbon has the configuration 1s22s22p2, in which the 2p subshell is incomplete (it has six

orbitals but only two are filled). But heavier atoms such as the transition elements may have more

than one incomplete subshell, for example, chromium has the configuration 1s22s22p63s23p63d54s,

in which the 3d subshell with ten orbitals has only five filled, and the 4s subshell with two orbitals

has only one filled. We might mention that while in hydrogen the 4s subshell has a higher energy

than the 3d, in heavier atoms the self-consistent potentials do not follow the rules of hydrogen.

Table 1 contains a partial table of electron configurations which shows these features of the

subshell filling sequence. The table includes a list of low-Z atoms, a list of transition elements

showing the competition between the 3d and 4s subshells, and a list of actinides, showing the

competition between the 5f , 6d and 7s subshells.

To summarize, for a given atom, Hartree-Fock theory, combined with averaging of the potentials,

gives us an electron configuration; a set of self-consistent, rotationally invariant potentials V̄d and

V̄ex; a set of eigenenergies ǫnℓ; and a set of single particle orbitals |λ〉 where λ = (nℓmℓms). Actually,

since the self-consistent potentials can be determined from the orbitals, it suffices just to give the

orbitals; and since the orbitals are central force eigenfunctions as in Eq. (4), it suffices to just give

the radial wave functions. For example, for carbon with configuration 1s22s22p2 it suffices to give

(in addition to the configuration) the radial wave functions R1s, R2s and R2p and the eigenenergies

ǫ1s, ǫ2s and ǫ2p. These radial functions and energies can only be found numerically.

3. The Central Field Approximation

The Slater determinant |Φ〉 that emerges from Hartree-Fock theory is not only a variational

estimate to the ground state wave function, it is also an exact eigenstate of the multi-particle

Hamiltonian,

H0 =

N
∑

i=1

h(ri,pi), (5)
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that is,

H0|Φ〉 = E0|Φ〉. (6)

This is because each of the N ! terms of the Slater determinant consists of the same orbitals, just

permuted among the electrons, but H0 brings out the total energy given by

E0 =
∑

λ

ǫλ =
∑

nℓ

νnℓ ǫnℓ, (7)

which is invariant under permutations and is the same for all N ! terms. Here in the last sum νnℓ

is the occupation number of subshell (nℓ), that is, the number of electrons in that subshell. Note

that although the ground eigenstate |Φ〉 of H0 is the Hartree-Fock estimate to the ground state

eigenfunction of the atom, E0 is not the Hartree-Fock estimate to the energy, since it double counts

the direct and exchange potential energies among the electrons. See Eq. (31.97), which shows that

E0 is too high. We will show how to correct this energy in a moment.

The Hamiltonian H0 represents what is called the central field approximation to the atom. It is

a cruder model than the basic N -electron atom Hamiltonian (1). It has more symmetry than that

Hamiltonian, which is invariant under spatial rotations of the entire N -electron system, generated by

L =
∑

i Li, but not under spatial rotations of the individual electrons, generated by the individual

angular momenta Li. The central field Hamiltonian H0, however, is invariant under the rotations of

individual electrons, that is, it commutes with each Li individually. It is a general rule in applications

of quantum mechanics that the more idealized the model, the more symmetry there is and thus a

higher degree of degeneracy. We will examine the degeneracy of H0 in more detail below.

4. Coupling Schemes

We can make the central field Hamiltonian H0 the basis of a perturbation expansion by writing

H = H0 +H1, where

H0 =
N
∑

i=1

h(ri,pi) =
N
∑

i=1

[p2i
2

−
Z

ri
+ V̄d(ri)− V̄ex,i

]

, (8a)

H1 =
∑

i<j

1

rij
−

N
∑

i=1

[

V̄d(ri)− V̄ex,i

]

. (8b)

Here H0 is the central field Hamiltonian (5) and H1 is written so that H = H0 + H1 is the basic

N -electron atom Hamiltonian (1). That is, we have added and subtracted the direct and exchange

potentials inside H to make H0 +H1.

The term H1 in Eq. (8b) consists of the exact interelectron Coulomb interactions, that is, the

term
∑

i<j 1/rij, minus the rotational average of the direct minus exchange potentials, summed over

electrons. This is sometimes called the “residual Coulomb potential.” If the rotational averaging

provides a good approximation to the exact interelectron Coulomb interactions, then the term H1

should be much smaller than the exact interelectron interactions. The exact interelectron Coulomb
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interactions are too big to treat by perturbation theory (apart from the case of helium, where

the results are not very satisfactory from a numerical standpoint), but with the rotational average

subtracted off, the result, the termH1 above, is small enough for a successful perturbation treatment.

That is, we have H1 ≪ H0. We shall outline this perturbation treatment below.

But if H1 is now a small term, the question arises, how does it compare to other small terms

we have neglected so far, such as the fine structure terms? To take these into account as well, we

shall contemplate another term in the Hamiltonian,

H2 =
N
∑

i=1

ξ(ri)Li · Si, (9)

which is the sum of the spin-orbit interactions for each electron. The quantity ξ(r) is a function

of the radius of the electron (see Eq. (24.13)) whose details will not concern us. The spin-orbit

term is only one of several fine structure terms, most of which we are omitting for simplicity, and

even the spin-orbit term is treated somewhat schematically. Our goal will be to give a qualitative

understanding of the effects of the fine structure terms without going into detail.

But to return to the question posed, what is the quantitative relation between H1 and H2? It

turns out that the answer depends on Z. In low Z atoms near the beginning of the periodic table,

we have H2 ≪ H1 ≪ H0. For such atoms, it makes sense to first treat H1 as a perturbation on H0,

find the eigenstates of H0 +H1, then to treat H2 as a second perturbation on top of H0 +H1. This

scheme involves classifying the eigenstates of H0 + H1 by their good quantum numbers, including

L and S, as discussed in Sec. 7 below. This scheme is called LS- or Russell-Saunders coupling. For

high Z atoms, however, near the end of the periodic table, it turns out that H1 <≈ H2 ≪ H0.

In this case it makes sense to first treat H2 as a perturbation on top of H0, then to treat H1 as

a perturbation on top of H0 + H2. This scheme is called jj-coupling, on account of the quantum

numbers that arise in it. In these notes we consider only LS-coupling.

5. The Unperturbed System in LS-Coupling

Let us therefore consider H1 as a perturbation on top of H0. As usual in perturbation theory,

we must first understand the unperturbed system, its eigenstates and eigenvalues, and in particular

its degeneracies, since those affect how the perturbation calculation is carried out. The ground state

energy of H0 is E0, shown in Eq. (7), and the Slater determinant |Φ〉 composed of central field

orbitals is a ground state eigenfunction of H0. Each subshell contains 2(2ℓ + 1) orbitals, each of

which has the same energy ǫnℓ, but not all the orbitals are necessarily occupied by electrons. In

complete subshells, in which all the orbitals are occupied, there is only one way to assign orbitals

to the electrons. But if there are any incomplete subshells, then there is more than one way to

assign central field orbitals without changing the energy E0, since the energy E0 does not depend

on the assignment of magnetic quantum numbers (mℓ,ms) to the orbitals. Thus, if there are any

incomplete subshells, the ground state of H0 is degenerate, and the degenerate eigenfunctions are
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the Slater determinants specified by the choices of magnetic quantum numbers for the orbitals in

incomplete subshells.

To distinguish the various Slater determinants with different magnetic quantum numbers, we

will replace the notation |Φ〉 with |m-set〉, where “m-set” refers to the magnetic quantum numbers

in incomplete subshells only. We do not need to specify the magnetic quantum numbers in complete

subshells, since there is only one possible assignment for those. Here the electron configuration is

understood, which specifies which subshells are incomplete and how many electrons they contain.

In the equation,

H0|m-set〉 = E0|m-set〉, (10)

a version of Eq. (6), the energy E0 depends on the configuration but not on the m-set, and the order

of the degeneracy is the number of possible m-sets.

Notice that in assigning orbitals to electrons the order of the assignment does not matter, since

all electrons are permuted among all orbitals by the Slater determinant. All that matters is which

orbitals are assigned, that is, the list of assigned orbitals. More precisely, if we change the order

in which the orbitals are assigned to the electrons, the Slater determinant will change sign if the

rearrangement of the orbitals amounts to an odd permutation. Apart from this sign, the order

does not matter, and even the sign is pinned down if we put the orbitals in a standard order when

assigning them. Therefore the number of distinct assignments of n electrons to orbitals in a subshell

containing s = 2(2ℓ + 1) slots is the binomial coefficient

(

s
n

)

, which is the number of distinct

unordered subsets of n elements taken from a set of s elements. This is the number of distinct m-

sets possible for the given subshell. As explained above, for low Z atoms the electron configuration

has only one incomplete subshell, so the degeneracy of the ground state is a single binomial coefficient

for that subshell. For heavier atoms there may be more than one incomplete subshell, in which case

the degeneracy is the product of the binomial coefficients, one for each incomplete subshell.

6. Enumerating m-sets

Consider, for example, B (boron), with electron configuration 1s22s22p. There is one electron

in the one incomplete (2p) subshell. Since this subshell contains 2(2ℓ+1) = 6 slots (for ℓ = 1), there

are six possible m-sets, and the ground state energy E0 is six-fold degenerate. The degeneracy is

given by the binomial coefficient,
(

6
1

)

= 6. (11)

See Table 2.

Now consider carbon, with configuration 1s22s22p2, whose m-sets are listed in Table 3. There

are now two electrons in the incomplete 2p subshell, so the degeneracy is

(

6
2

)

= 15. (12)
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mℓ ms

1 1 1/2

2 1 −1/2

3 0 1/2

4 0 −1/2

5 −1 1/2

6 −1 −1/2

Table 2. Allowed m-sets for boron, with configuration 1s22s22p.

Since there are two electrons, there are now two mℓ and two ms values in an m-set. The table

lists all combinations of mℓ pairs in descending order, that is, such that mℓ1 ≥ mℓ2. For example,

the table contains (mℓ1,mℓ2) = (1, 0) but not (mℓ1,mℓ2) = (0, 1), which is just an exchange of

quantum numbers that does not represent a distinct state. When the two mℓ values are equal,

for example, in row 1 of the table where (mℓ1,mℓ2) = (1, 1), then only one set of ms values is

given, namely, (ms1,ms2) = (1
2
,− 1

2
), because if ms1 = ms2 then the state vanishes, and because

(ms1,ms2) = (− 1

2
, 1

2
) is the same state as (ms1,ms2) = (1

2
,− 1

2
). But if the mℓ values are distinct,

as for example in rows 2–5 of table where (mℓ1,mℓ2) = (1, 0), then all 22 = 4 combinations of

(ms1,ms2) values are given, because they all represent distinct states. Proceeding in this way the

table lists all possible m-sets, confirming that there are 15 total.

mℓ1 mℓ2 ms1 ms2

1 1 1 1/2 −1/2
2 1 0 1/2 1/2
3 1 0 1/2 −1/2
4 1 0 −1/2 1/2
5 1 0 −1/2 −1/2
6 1 −1 1/2 1/2
7 1 −1 1/2 −1/2
8 1 −1 −1/2 1/2

mℓ1 mℓ2 ms1 ms2

9 1 −1 −1/2 −1/2
10 0 0 1/2 −1/2
11 0 −1 1/2 1/2
12 0 −1 1/2 −1/2
13 0 −1 −1/2 1/2
14 0 −1 −1/2 −1/2
15 −1 −1 1/2 −1/2

Table 3. Allowed m-sets for carbon, with configuration 1s22s22p2.

As a final example, consider nitrogen, with configuration 1s22s22p3. The number of m-sets is

(

6
3

)

= 20. (13)

These are listed in Table 4. The mℓ triplets are listed in descending order, that is, mℓ1 ≥ mℓ2 ≥ mℓ3,

but triplets with the same values, that is, mℓ1 = mℓ2 = mℓ3, are omitted, since for those it is

impossible to assign electron spin quantum numbers ms = ± 1

2
without creating a duplicate and

hence a zero state. In cases where two mℓ’s are equal and one different, for example, rows 1–2 with
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mℓ1 mℓ2 mℓ3 ms1 ms2 ms3

1 1 1 0 1/2 −1/2 1/2
2 1 1 0 1/2 −1/2 −1/2
3 1 1 −1 1/2 −1/2 1/2
4 1 1 −1 1/2 −1/2 −1/2
5 1 0 0 1/2 1/2 −1/2

6 1 0 0 −1/2 1/2 −1/2
7 1 0 −1 1/2 1/2 1/2
8 1 0 −1 1/2 1/2 −1/2
9 1 0 −1 1/2 −1/2 1/2
10 1 0 −1 1/2 −1/2 −1/2

mℓ1 mℓ2 mℓ3 ms1 ms2 ms3

11 1 0 −1 −1/2 1/2 1/2
12 1 0 −1 −1/2 1/2 −1/2
13 1 0 −1 −1/2 −1/2 1/2
14 1 0 −1 −1/2 −1/2 −1/2
15 1 −1 −1 1/2 1/2 −1/2

16 1 −1 −1 −1/2 1/2 −1/2
17 0 0 −1 1/2 −1/2 1/2
18 0 0 −1 1/2 −1/2 −1/2
19 0 −1 −1 1/2 1/2 −1/2
20 0 −1 −1 −1/2 1/2 −1/2

Table 4. Allowed m-sets for nitrogen, with configuration 1s22s22p3.

(mℓ1,mℓ2,mℓ3) = (1, 1, 0), the identical mℓ values are matched with ms =
1

2
and ms = − 1

2
, and the

odd mℓ is matched with ms = ± 1

2
, giving a total of two states. In cases where all three mℓ’s are

distinct, for example, rows 7–14 of the table for which (mℓ1,mℓ2,mℓ3) = (1, 0,−1), all possible ms

values are assigned, giving 23 = 8 distinct states. The number of distinct m-sets in the table is 20,

agreeing with the binomial coefficient (13).

7. Good Quantum Numbers of the Basic N-electron Atom Hamiltonian

We see that if the electron configuration contains any incomplete subshells then the ground

state of H0 is degenerate. This means that we can expect the ground state of H0 to split when

the perturbation H1 is turned on, and that in principle we will have to diagonalize a matrix to find

the energy shifts. As usual in perturbation theory, it helps to employ a basis in the perturbation

calculation that is an eigenbasis of a set of commuting operators, in which as many as possible of

the operators commute with the perturbation. See Sec. 24.8. In the present case, the operators that

commute with H1 are the same that commute with H = H0 +H1, that is, the operators in question

commute with the basic N -electron Hamiltonian (1).

These operators were discussed in Sec. 31.2, and include L, S and π. If we ask for a list of

operators that commute with H and with each other, then a suitable choice is L2, Lz, S
2, Sz and

π. Thus the eigenstates of H = H0 +H1 can rigorously be characterized by their quantum numbers

(LMLSMSπ) (using π both for the parity operator and its eigenvalue). The Slater determinant

|m-set〉, however, is an eigenstate only of Lz, Sz and π, and not, in general, of L2 and S2.

To see this consider first

Lz =

N
∑

i=1

Liz, (14)

the z-component of orbital angular momentum, summed over all the electrons. When this is applied

to a single term in a Slater determinant |m-set〉, each operator Liz brings out the value mℓi, the
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mℓ value of the orbital assigned to electron i in the given term. Thus Lz brings out the sum of

these values,
∑

imℓi. There are N ! terms in the Slater determinant, but these consist of permuting

orbitals among electrons, and this sum is invariant under such permutations. Thus the sum is the

same for all the N ! terms of the Slater determinant, and we have

Lz|m-set〉 =
(

N
∑

i=1

mℓi

)

|m-set〉. (15)

Similarly, we have

Sz|m-set〉 =
(

N
∑

i=1

msi

)

|m-set〉. (16)

As for parity, the operator π maps all position vectors ri into −ri, and so brings out a factor

(−1)ℓi from the orbital with angular momentum quantum number ℓi. The product of these factors

is invariant under permutations and therefore the same for all the terms of the Slater determinant,

and we have

π|m-set〉 =
[

N
∏

i=1

(−1)ℓi
]

|m-set〉. (17)

The parity eigenvalue depends only on the electron configuration, which specifies the ℓ quantum

numbers for all the electrons. In the following discussion we will be concentrating on the fixed ground

state configuration of an atom, so the parity quantum number will be fixed and will not play a large

role in the subsequent considerations.

In summary, the Slater determinant |m-set〉 composed of central field orbitals is an eigenstate

of Lz, Sz and π with quantum numbers

ML =

N
∑

i=1

mℓi, MS =

N
∑

i=1

msi, π =

N
∏

i=1

(−1)ℓi . (18)

Actually, the sums and products in these eigenvalues can be taken over incomplete subshells only,

since the sums
∑

i mℓi and
∑

imsi are 0 when taken over complete subshells, and the product
∏

i(−1)ℓi is 1 when taken over complete subshells. Thus, the eigenvalues of ML and MS depend

only on the m-set. As for the parity π, it is independent of the m-set and depends only on the

configuration.

A similar argument does not work, however, for the operators L2 and S2. The individual terms

of a given Slater determinant |m-set〉 are not in general eigenstates of these operators, and neither

is the sum. The Slater determinants |m-set〉, for the m-sets allowed by the configuration, span the

ground eigenspace of H0, but they diagonalize only the symmetry operators Lz, Sz and π, not L2

and S2.
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8. A Symmetry Adapted Basis

Let us denote the ground eigenspace of H0 by E0. This space is spanned by the Slater deter-

minants |m-set〉, where the m-sets run over all allowed by the incomplete subshells (for example,

15 in the case of carbon). Thus in first order perturbation theory we need in principle to diagonal-

ize the matrix 〈m-set|H1|m-set′〉 to find the energy shifts, which give us the energy eigenvalues of

H = H0 +H1 that grow out of E0 as H1 is switched on.

This matrix may be large (for example, it is 15 × 15 in the case of carbon), so it will help

to choose a good basis to simplify the diagonalization. The best basis is an eigenbasis of a set of

commuting, good quantum numbers, such as (L2, S2, Lz, Sz), as discussed in Sec. 7. We omit π from

the list since it is constant on E0 (all basis states |m-set〉 have the same parity). The set of Slater

determinants |m-set〉 is not such a basis, since it is not an eigenbasis of L2 or S2, in general.

The operators (L2, S2, Lz, Sz) commute with H0 and so can be restricted to E0 (see Sec. 1.23).

Also, since they commute with each other, they possess simultaneous eigenspaces inside E0. These

simultaneous eigenspaces are characterized by the quantum numbers (L, S,ML,MS) of the operators

(L2, S2, Lz, Sz). If any of these eigenspaces are multidimensional, that is, if there is any degeneracy

inside E0 remaining after the quantum numbers (L, S,ML,MS) are specified, then we can introduce

an index γ to label an arbitrarily chosen orthonormal basis inside the eigenspaces. In this way we

conclude that there is an orthonormal basis inside E0 that we can label by |γLSMLMS〉. Further-

more, we can show that if γ, L and S are held fixed, then the basis vectors with different values of

ML and MS are related by the raising and lowering operators, L± and S±. This is a way of saying

that E0 breaks up into irreducible subspaces under both purely orbital and purely spin rotations,

which in turn is a consequence of the fact that E0 is invariant under both orbital and spin rotations.

Actually, as it turns out, for small Z the simultaneous eigenspaces of (L2, S2, Lz, Sz) inside E0

are nondegenerate, so the index γ is not needed. The first element for which such a degeneracy

appears is vanadium, with Z = 23. For simplicity in the following we will suppress the index γ,

since the examples we will deal with have Z < 23 (but see Prob. 1).

So to find a good basis for perturbation theory, we must find the basis vectors |LSMLMS〉 inside

E0 as linear combinations of the Slater determinants |m-set〉. We write these linear combinations

schematically as

|LSMLMS〉 =
∑

m-sets

(coefs)|m-set〉. (19)

Once we have found the coefficients, then we can compute the matrix elements of H1 inside E0 with

respect to the new basis,

〈LSMLMS|H1|LSMLMS〉. (20)

Since H1 commutes with all of the operators (L2, S2, Lz, Sz), it is diagonal in the basis |LSMLMS〉

and the energy shifts are the diagonal elements (20). (The off-diagonal elements vanish, and there is

no need for primes on one side or the other in Eq. (20).) Moreover, since H1 is invariant under both

spatial and spin rotations, the energy shifts do not depend on the quantum numbers ML or MS .
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Thus, after the perturbation is turned on, the energies depend on L and S, and are (2L+1)(2S+1)-

fold degenerate. In general, the unperturbed energy level E0 will split into more than one energy

level, each characterized by a value of L and S.

The values of L and S that occur for a given atom are called multiplets. These are the energy

levels of low-Z atoms that are seen experimentally, at a resolution at which fine structure can be

ignored. Understanding the multiplets, such as which ones occur and in what order, constitutes a

basic understanding of the structure of multielectron atoms.

Determining the coefficients in the expansion (19) is somewhat like the problem of finding

Clebsch-Gordan coefficients, but it is more complicated because there are two distinct kinds of

angular momenta, orbital and spin, because the number of individual angular moments (the Li and

Si for the electrons in the incomplete subshells) that must be added is in general more than two, and

because of the requirements of antisymmetry. Still, it is not that hard (see Prob. 2). For the time

being, however, we shall concentrate on a simpler problem, which is to determine which multiplets

(which values of L and S) occur in E0. This is necessary in any case before we can compute the

coefficients in Eq. (19).

9. Determining the Multiplets

The spectroscopic notation for a multiplet with given L and S is 2S+1L, where L is replaced by

one of the code letters, S, P , D, F , etc., for L = 0, 1, 2, 3, . . .. We will now determined the multiplets

inside the ground state eigenspace of H0 for several different atoms.

For any atom with complete subshells, for example, beryllium with configuration 1s22s2 or neon

with configuration 1s22s22p6, there is only one multiplet, 1S (that is, L = 0 and S = 0), which is

pronounced, “singlet-S.” For such atoms, there is only one way to assign orbitals to electrons, and

therefore only a single Slater determinant, which spans the one-dimensional eigenspace E0. Now since

E0 is invariant under both spatial and spin rotations, it must break up into irreducible subspaces

under both kinds of rotations. But a one-dimensional space can only hold the value 0 of angular

momentum, since all higher values have multi-dimensional irreducible subspaces. Therefore only the

values L = 0 and S = 0 are allowed.

In atoms with incomplete subshells, the allowed multiplets are determined by the incomplete

subshells only. This is because the other (complete) subshells have L = 0 and S = 0, which do not

contribute to the total L and S of the atom.

In the case of boron there is one electron in the incomplete shell 2p, and the m-sets are given

in Table 2. The total orbital and spin angular momentum of the atom are the same as the orbital

and spin of this one electron, that is, L = ℓ = 1 and S = s = 1/2. Thus there is one multiplet, 2P

(pronounced “doublet-P”). It has a degeneracy 2× 3 = 6, the same as the binomial coefficient (11).

In the case of carbon there are two 2p electrons. We can determine the allowed multiplets by

a special method that only works for two equivalent electrons. Here the word “equivalent” means,
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L S multiplet degen

0 0 1S 1× 1 = 1
1 1 3P 3× 3 = 9
2 0 1D 1× 5 = 5
total 15

Table 5. Multiplets in the ground configuration 1s22s22p2 of carbon.

belonging to the same subshell. Both electrons have ℓ = 1. When we combine two angular momenta

ℓ = 1, we obtain 1 ⊗ 1 = 0 ⊕ 1 ⊕ 2, that is, L = 0, 1 or 2. Of these, L = 2 is symmetric under

exchange of the electrons, L = 1 is antisymmetric, and L = 0 is symmetric. In general, when

we combine two angular momenta, the maximum value of total angular momentum is symmetric

under exchange, and the exchange symmetry alternates as we decrease that value down to 0. See

Prob. 28.2. Similarly, when we combine the spins of the two electrons, we get 1

2
⊗ 1

2
= 0 ⊕ 1,

that is S = 0 or S = 1, of which S = 1 is symmetric under exchange of electrons and S = 0 is

antisymmetric. Now since the overall wave function must be antisymmetric, we can have a state

that is symmetric under orbital exchange and antisymmetric under spin exchange, or vice versa.

Thus the possibilities are L = 0, S = 0, or 1S; L = 1 and S = 1, or 3P ; and L = 2 and S = 0, or 1D.

These multiplets are pronounced, “singlet-S,” “triplet-P ,” and “singlet-D.” These possibilities are

enumerated in Table 5 along with the degeneracies, that is, the dimensionalities of the subspaces of

a given multiplet. These dimensionalities add up to 15, as they must.

We now present a tabular way of getting the multiplets for carbon which can be generalized to

more than two equivalent electrons. Table 6, which is an expanded version of Table 3, shows the

work. The logic is similar to that employed in the determining the allowed values of j and m when

coupling angular momenta (see Sec. 18.10).

The 15 m-sets for carbon are listed and numbered in the first five columns of the table, after

which follow two columns with the ML andMS values. The method begins with row 1, anm-set with

ML = 2 and MS = 0. This is the highest ML value in the table, and MS = 0 is the highest (actually,

the only) value that occurs with ML = 2. Therefore this m-set is a nondegenerate simultaneous

eigenstate of Lz and Sz with eigenvalues 2 and 0, respectively. Now since L2 and S2 both commute

with Lz and Sz, this state must be an eigenstate of both L2 and S2, according to Theorem 1.5. But

what are the quantum numbers of L2 and S2, that is, what are L and S? First, L cannot be less

than 2 because that would violate the rule ML ≤ L. Nor can L be greater than 2, because if it were,

we could apply a raising operator L+ to this state and obtain a state with ML = 3. But there is no

state with ML = 3. Therefore we must have L = 2. A similar logic shows that S must be 0 for this

state. This means that m-set number 1 is the doubly stretched state of a multiplet with L = 2 and

S = 0, that is, the multiplet 1D, as shown in the table. The multiplet is marked with the symbol §.

This multiplet has (2L+1)(2S+1) = 5× 1 = 5 states in it, which can be obtained by applying
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mℓ1 mℓ2 ms1 ms2 ML MS L S multiplet degen

1 1 1 1/2 −1/2 2 0 2 0 1D (§) 1× 5 = 5
2 1 0 1/2 1/2 1 1 1 1 3P (†) 3× 3 = 9
3 1 0 1/2 −1/2 1 0 §
4 1 0 −1/2 1/2 1 0 †
5 1 0 −1/2 −1/2 1 −1 †

6 1 −1 1/2 1/2 0 1 †
7 1 −1 1/2 −1/2 0 0 §
8 1 −1 −1/2 1/2 0 0 †
9 1 −1 −1/2 −1/2 0 −1 †
10 0 0 1/2 −1/2 0 0 0 0 1S (‡) 1× 1 = 1

11 0 −1 1/2 1/2 −1 1 †
12 0 −1 1/2 −1/2 −1 0 §
13 0 −1 −1/2 1/2 −1 0 †
14 0 −1 −1/2 −1/2 −1 −1 †
15 −1 −1 1/2 −1/2 −2 0 §

total 15

Table 6. A tabular way of getting the multiplets in carbon.

the lowering operators L− and S− to the doubly stretched state. Actually, in this case, we need

only apply L−, since S = 0. Applying L− once gives a state with ML = 1 and MS = 0. Now there

are two m-sets with these values of ML and MS, numbers 3 and 4, and number 3 is marked with

the symbol §, meaning 1D. This does not mean that if we apply L− to the m-set number 1 we get

m-set number 3. It means that m-sets 3 and 4 span a 2-dimensional space, and if we apply L− to

m-set number 1 we get a vector in this space, that is, a linear combination of m-sets numbers 3 and

4. Applying L− again we get a state with ML = 0, MS = 0, which must lie in the 2-dimensional

space spanned by m-sets numbers 7 and 8. The first of these is marked with §. Similarly we mark

m-set 12 with §, indicating one vector in the 2-dimensional space spanned by m-sets 12 and 13, with

ML = −1 and MS = 0, and finally we mark m-set 15 with §, which spans the 1-dimensional space

with ML = −2 and MS = 0.

Next we look for the m-set in the table that is not marked with § that has the highest ML and

MS values. We find it in m-set number 2, which has ML = 1 and MS = 1. This must be the doubly

stretched state of a multiplet with L = 1 and S = 1, that is, a 3P multiplet. We mark this m-set

and all 8 others that can be obtained from it by applying L− and S− with the symbol †. Finally,

we look for m-sets that are not marked either with § or † and we find m-set number 10, the doubly

stretched state of a multiplet with L = 0 and S = 0, that is, the 1S multiplet. It has only one state,

which is marked with ‡. In this way, we find the same multiplets for carbon as were given in Table 5.

The tabular method can be applied to nitrogen, with 3 equivalent electrons. A simplification is

to notice that if all we want are the multiplets, it suffices to list only the m-sets with ML ≥ 0 and



14 Notes 32: Atomic Structure in Multi-Electron Atoms†

mℓ1 mℓ2 mℓ3 ms1 ms2 ms3 ML MS L S multiplet degen

1 1 1 0 1/2 −1/2 1/2 2 1/2 2 1/2 2D (§) 2× 5 = 10
2 1 1 −1 1/2 −1/2 1/2 1 1/2 §
3 1 0 0 1/2 1/2 −1/2 1 1/2 1 1/2 2P (†) 2× 3 = 6
4 1 0 −1 1/2 1/2 1/2 0 3/2 0 3/2 4S (‡) 4× 1 = 4
5 1 0 −1 1/2 1/2 −1/2 0 1/2 §
6 1 0 −1 1/2 −1/2 1/2 0 1/2 †
7 1 0 −1 −1/2 1/2 1/2 0 1/2 ‡

total 20

Table 7. Table for obtaining the multiplets in nitrogen.

MS ≥ 0, since the multiplets are identified by their doubly stretched states. In the case of nitrogen,

this only requires us to list 7 m-sets out of 20. These are shown in Table 7. The multiplets are 2D,
2P and 4S (pronounced, “quartet-S”), and the degeneracies add up to 20, as they must.

After nitrogen we come to oxygen with configuration 1s22s22p4, which has four occupied orbitals

in the 2p subshell and two unoccupied ones, or, as we say, two “holes.” Some experience with

constructing tables as above shows that holes lead to the same multiplets as electrons. Therefore

the multiplets for oxygen are the same as for carbon, that is, 1S, 3P and 1D. Similarly, fluorine, one

hole in the 2p subshell, has the same multiplet as boron, namely, 2P , and neon, with all subshells

filled, has the one multiplet 1S.

10. Hund’s Rules and Fine Structure

Figure 1 shows the low-lying energy levels of carbon. The levels shown are experimental,

but at the resolution of the diagram they are identical to the multiplets of the basic N -electron

Hamiltonian (1). That Hamiltonian omits a number of small effects such as fine structure, but those

are too small to be seen at the scale of the diagram. At higher resolution, however, many of the

levels of the diagram will be seen to be split. The levels are labeled by the configuration they belong

to, with even parity configurations on the left and odd ones on the right. The three multiplets we

found in Tables 5 and 6 are the three lowest levels, all of even parity, labeled as belonging to the

ground state configuration a = 1s22s22p2. One can see that this configuration is reasonably well

separated from other (excited state) configurations.

The theory we have presented so far tells us the multiplets in the ground state configuration,

but not their energies or even the ordering of the energies. These of course can be obtained by

explicitly evaluating the matrix elements (20). It turns out that when there is only one multiplet,

for example, in the case of complete subshells, then the energy estimate coming from first order

perturbation theory agrees with the Hartree-Fock estimate (see Prob. 27.3), while if there is more

than one multiplet, then the one with minimum energy is less than the Hartree-Fock estimate but

still an upper bound to the true ground state of the Hamiltonian (1). In Fig. 1 we see that the
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ground state multiplet for carbon is 3P .

0
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π = −1
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1P b

3P b

1P d
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S P D S P D F

π = +1

Fig. 1. Atomic energy levels of carbon. Energies are measured in eV from the ground state, and all levels less than
10eV are shown. Levels of even parity (π = +1) are on the left, those of odd parity (π = −1) on the right. The

superscripts a, b, etc, refer to the electron configuration, with a = 2s22p2, b = 2s22p3p, c = 2s22p3d, d = 2s22p4p,
e = 2s2p3, f = 2s22p3s, g = 2s22p4s. All configurations are understood to be attached to a helium core, 1s2. Source:
NIST database.

A set of semi-empirical rules, called Hund’s rules, tell which multiplet in the ground state

configuration has the least energy (this is the ground state multiplet). Hund’s rule number 1 says

that the ground state multiplet has the highest value of S among all the multiplets in the ground

state configuration. For example, in the case of carbon, the multiplet 3P has the highest S, and we

see that it is the ground state. Higher S leads to lower energy because it implies that the individual

spins are aligned, which in turn means that the spin part of wave function is symmetric, which

implies that the spatial part of the wave function is antisymmetric. This keeps the electrons further

apart, lowering their Coulomb energy. This is the same reason that the triplet states are lower in

energy than the singlet states in helium, as explained in Sec. 29.11. In case there is more than one

multiplet with the highest value of S, Hund’s rule number 2 says that of these, the one with the

highest L has the lowest energy.

When we apply the fine-structure perturbation H2 (see Eq. (9)) on top of H0+H1, we see that

in general we will have degenerate perturbation theory, in which we must contemplate diagonalizing
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the matrix

〈LSM ′

LM
′

S|H2|LSMLMS〉. (21)

Here it is understood that we are working in the ground state configuration, and that L and S

specify a unique multiplet (so that the index γ is not needed). The indices L and S are the same on

both sides of the matrix element, because they specify the multiplet, that is, the eigenspace of the

Hamiltonian H0+H1, while the ML and MS indices are allowed to be different because they specify

the basis inside that unperturbed eigenspace. The matrix is not diagonal in ML or MS because L

and S, which generate respectively rotations of all orbital and all spin degrees of freedom, do not

commute with H2.

This is potentially a large matrix, for example, it is 9×9 in the case of the ground state multiplet
3P of carbon. But the strategy for diagonalizing it is (by this time) obvious: we must switch from

the uncoupled basis |LSMLMS〉 to the coupled basis |LSJMJ〉, in which J = L + S. The total

angular momentum J generates rotations of all degrees of freedom of the system, so it commutes

with H2. Therefore we define

|LSJMJ〉 =
∑

MLMS

|LSMLMS〉〈LSMLMS |JMJ〉, (22)

where the last matrix element is a Clebsch-Gordan coefficient, and now the energy shifts are just

the diagonal matrix elements with respect to the coupled basis,

∆ELSJ = 〈LSJMJ |H2|LSJMJ〉, (23)

and they are independent of MJ as indicated. The new energy levels are (2J + 1)-fold degenerate.

For example, in the case of the ground state multiplet 3P of carbon, in which L = 1 and S = 1,

we have J = 0, 1 or 2. We see that the 9-dimensional multiplet breaks up into three subspaces when

fine structure is turned on, of dimensionality 1, 3 and 5. These are the energy levels of H0+H1+H2,

called terms. Terms are denoted 2S+1LJ in spectroscopic notation. For example, in the case of the

ground state multiplet of carbon, the terms are 3P0,
3P1 and 3P2.

The theory presented does not allow us to say which term in the ground state multiplet has the

lowest energy, but Hund’s rule number 3 comes to the rescue. This rule says that in configurations

in which the incomplete subshell is less than half filled, the term with the lowest energy is the one

with the lowest J . These are called regular multiplets. But if the incomplete subshell is more than

half filled, then the term with the least energy is the one with the highest J . These are called

inverted multiplets. For example, in the case of carbon, for which the 2p subshell is less than half

filled, the ground state term is 3P0. But in oxygen, which as the same multiplets as carbon (because

holes behave the same as electrons, insofar as determining multiplets is concerned), the ground state

term is 3P2. These ground state terms give the exact quantum numbers of the true ground state of

H0 +H1 +H2.

In the case of multiplets in which the incomplete subshell is exactly half filled, such as nitrogen,

first order perturbation theory for the terms gives a vanishing result, and one must go on to second

order theory. We omit the details.
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Problems

1. Work out the multiplets 2S+1L which result from 3 equivalent d electrons. (“Equivalent” means

that they all belong to the same subshell.) Check to make sure your answer adds up to the correct

number of levels, based on the degeneracy expected in the central field approximation. You will

see the necessity of the index γ in |γLSMLMS〉, since some multiplets appear more than once. In

the case of vanadium, use Hund’s rules to determine the ground state multiplet. When spin-orbit

coupling is turned on, the multiplets split, and the resulting levels are denoted 2S+1LJ . Which of

these represents the ground state of vanadium?

2. Write out the 2P wave functions explicitly for an (np)3 configuration (e.g., nitrogen), that is,

as linear combinations of Slater determinants that you may identify by their m-sets (the set of

magnetic quantum numbers for electrons in incomplete subshells). To help the grader, use the same

ordering of magnetic quantum numbers as shown in Table 4, for example, denote Slater determinant

number 5 in that table by |100; 1
2
, 1

2
,− 1

2
〉.

Table 4 effectively gives a standard ordering for the orbitals in the Slater determinant, one in

which mℓ1 ≥ mℓ2 ≥ mℓ3 and in which the ms values corresponding to a run of equal mℓ values are

in descending order. Since there can be a maximum of two mℓ values in a row that are equal, that

means (1
2
,− 1

2
) for the corresponding ms values in that case. This rule is followed in the table.

3. A problem on jj-coupling. The Hamiltonian (in atomic units) for a neutral atom (N = Z) can

be written H = H0 +H2 +H1, where the three terms are given by Eqs. (8a), (8b) and (9).

The energy eigenvalues E0 of H0 are determined by the electron configuration. We will be

interested in lead (Pb, Z = 82), with two 6p electrons outside closed subshells, and bismuth (Bi,

Z = 83), with three 6p electrons outside closed subshells. For such heavy atoms, H2 is larger than

H1, so we first solve the Hamiltonian H0, then successively add the terms H2 and H1, and see what

happens to the energy levels and eigenstates.

We can assume that H0 is solved for the ground state configuration, and that it gives a known

energy E0. This would involve Hartree-Fock theory, and would give us the central potential V̄i. Next

we add H2 and write

H0 +H2 =

Z
∑

i=1

h(ri,pi,Si), (24)

where

h(r,p,S) =
p2

2
−

Z

r
+ V̄d(r) − V̄ex,i + ξ(r)L · S. (25)

We write the single particle eigenstates and eigenvalues as

h|λ〉 = ǫλ|λ〉, (26)

where λ stands for the single particle quantum numbers (nℓjmj), and where ǫλ is independent of mj ,

ǫλ = ǫnlj . The states |λ〉 form an orthonormal basis in the Hilbert space for a single electron. The
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eigenstates of H0 +H2 are Slater determinants formed out of Z orbitals |λ〉, and the corresponding

energies are

E0+2 =
∑

λ

ǫλ. (27)

The terms ǫλ = ǫnℓj in the last, incomplete subshell, the 6p with ℓ = 1, have two possible j values,

1/2 and 3/2. So the contribution from the last subshell depends on the number of electrons with

j = 1/2 and the number with j = 3/2.

For example, in Pb with the 6s2 configuration, the two electrons can give three possible pairs of

j values, (j1, j2) = (3
2
, 3

2
), (3

2
, 1

2
), or (1

2
, 1
2
). Therefore the single level E0 of H0 breaks up into three

levels E0+2, labeled by (j1, j2), when we turn on H2. As we know from spin-orbit theory (Notes 24),

the energy ǫnℓj is an increasing function of j, so the (j1, j2) are sequenced as indicated in Fig. 2.

(3
2
, 3

2
), (6)

(3
2
, 1

2
), (8)

(1
2
, 1

2
), (1)

(1)

(5)

(5)

(3)

(1)

J = 0

J = 2

J = 2

J = 1

J = 0

6p2 (15)

H0 H0 +H2 H0 +H2 +H1

Fig. 2. Term diagram in jj-coupling for lead (Pb). Drawing is not to scale.

Finally, when we turn on H1, the individual Ji operators no longer commute with the Hamilto-

nian, but J =
∑

i Ji does. Therefore we must now organize the energy eigenstates according to the

(J,MJ) quantum numbers. In Pb, for example, the (3
2
, 3

2
) state splits into J = 0 and J = 2 states.

The state J = 1, which occurs in 3

2
⊗ 3

2
, is not allowed by the Pauli principle. Likewise, the (3

2
, 1

2
)

level splits into J = 1 and J = 2 levels, because 3

2
⊗ 1

2
= 1 ⊕ 2. Here the Pauli principle causes no

extra restriction, because j1 6= j2. Finally, the (1
2
, 1

2
) gives only a J = 0 level. All these levels and

their degeneracies (in parentheses) are indicated in the figure.

(a) For the case of bismuth (6p3 configuration), indicate the allowed (j1, j2, j3) terms and their

degeneracies when H2 is added to H0. Make sure the degeneracies add up to the degeneracy of the

6p3 configuration. Indicate also the allowed J values contained in each (j1, j2, j3) term.

(b) The (3
2
, 3

2
, 1

2
) term contains a J = 3/2 component. Find the normalized states |JMJ〉 in

this component for MJ = 3

2
and MJ = 1

2
. Write your answers as linear combinations of Slater
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determinants composed of orbitals |λ〉; the Slater determinant will be identified by the (j,mj)

quantum numbers of the last three orbitals, since the orbitals for the 80 core electrons are fixed. To

help the grader(s), identify these Slater determinants as |j1j2j3;mj1mj2mj3〉.


