
Physics 221B

Spring 2012

Homework 25

Due Friday, April 27, 2012

Reading Assignment:

Please read the lectures notes for the lectures of April 9 to April 20, including the

section from Sakurai on hole theory. These two weeks of lectures covered hole theory, the

second quantization of the Dirac equation, and an application of first order perturbation

theory using the electron-positron field interacting with an external electrostatic field (elec-

tron scattering in a potential). This homework concerns another application that can be

accomplished with second quantized fermion fields and first order perturbation theory. The

lectures also got started on an application of second order perturbation theory, namely,

electron-positron annihilation, which we will continue next week.

1. We use natural units (h̄ = c = 1) in this problem.

Beta decay is the reaction

n→ p+ e− + ν̄, (1)

the decay of a neutron into a proton, an electron, and an antineutrino. The Feynman

diagram for this process is shown in Fig. 1.
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Fig. 1. Feynman diagram for β-decay.

In 1934 Fermi wrote down a field theory to explain β-decay. Since that time our under-

standing of weak interaction physics has become much more sophisticated (parity violation,

helicity of neutrinos, weak currents, three types of neutrinos, electroweak unification, W

and Z bosons, neutrino oscillations and neutrino mass, etc etc) but Fermi’s theory does
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explain the basic experimental facts about β-decay (the energy spectrum of the emitted

electron and other things) that were known at that time. In addition, Fermi’s theory is

accessible by methods developed in this course. Fermi’s theory can be described by a field

Hamiltonian,

H = H0n +H0p +H0e +H0ν +Hint, (2)

where each term with a 0 subscript is the Hamiltonian for a free spin-1
2
fermion (neutron,

proton, electron, neutrino), each with the general form

H0 =

∫

d3x : ψ†(x)(−iα · ∇+mβ)ψ(x) :=
∑

ps

E(b†psbps + d†psdps), (3)

where H0, ψ, m, E, bps, dps etc all implicitly take a subscript i = n, e, p, ν to indicate the

type of particle. The notation is as in class and in the notes. The fermion field ψ has the

Fourier expansion,

ψ(x) =
1√
V

∑

ps

√

m

E

(

bpsupse
ip·x + d†psvpse

−ip·x
)

, (4)

where V is the volume of the box and otherwise the notation is as in class.

As for the interaction Hamiltonian in Eq. (2), Fermi chose it to be the product of four

Fermion fields in order to take into account the 4-point vertex in Fig. 1. He also chose

a current-current type of interaction, since the electromagnetic interaction is of this type.

Fermi’s interaction Hamiltonian is

Hint = g

∫

d3x : (ψ̄pγ
µψn)(ψ̄eγµψν) : +h.c., (5)

where g is a constant, where all fields are evaluated at x and where h.c. means “Hermitian

conjugate.” By using this Hamiltonian to calculate the rate of neutron decay and comparing

to experiment one can get a value for the constant g (essentially, the Fermi constant).

(a) Explain why the Hermitian conjugate of a term such as ψ̄pγ
µψn is ψ̄nγ

µψp (it is not

completely obvious since we have ψ̄ instead of ψ†). This means that the Hermitian conjugate

term in the Hamiltonian can be written

g

∫

d3x : (ψ̄νγµψe)(ψ̄nγ
µψp) : . (6)

(b) Show that the interaction Hamiltonian connects the initial and final states in Fig. 1,

that is, the matrix element 〈f |Hint|i〉 is nonzero. For this it is sufficient to show that the
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field part of the matrix element is nonzero. You don’t have to write out the matrix element

in all detail, you can be schematic, but indicate the important parts for the question at

hand. Notice that the interaction gives rise to 2 × 16 = 32 possible Feynman diagrams.

Show that the Feynman diagram for inverse β-decay,

p+ e→ n+ ν (7)

is one of them. Draw a Feynman diagram connecting the four particles and their antipar-

ticles that is not one of the 32.

(c) Inverse β-decay (7) takes place in the final stages of core collapse in a supernova ex-

plosion. As the matter is compressed by gravity the top of the electron Fermi sea rises,

ultimately reaching relativistic energies (∼ 511 KeV) and beyond. When it reaches ∼ 1.3

MeV, the mass difference between the neutron and the proton, the electrons are energetic

enough to cause the reaction (7) to take place. Any extra electron energy goes mostly into

the energy of the neutrino. As the most energetic electrons are removed, their contribution

to the pressure is also eliminated, leading to further gravitational contraction. Simultane-

ously, protons are converted to neutrons and neutrinos are emitted. In this way a good part

of the neutrons in a neutron star are created. The neutrinos from a supernova explosion

were actually observed in 1989.

We will use Fermi’s theory to compute the cross section for inverse beta decay. Before

beginning the quantum mechanics, it’s a good idea to practice a little with the conservation

laws. Working in the center of mass frame, write down an expression for the total energy Etot

of the system as a function of the initial electron 3-momentum pe = |pe|. The momentum

pe is a parameter of the problem and is fixed for the rest of the calculation; therefore so

is Etot. Now compute Etot as a function of the final neutrino 3-momentum pν = |pν |.
This final 3-momentum pν should be regarded as a variable, since we will be summing over

a collection of final states to get a cross section. Imagine solving for pν as a function of

Etot. Don’t actually do it, since it’s a little messy, but call the root obtained pf (for “final”

momentum). In the limit mν → 0, however, it’s easy to solve for pν as a function of Etot;

do this. The whole calculation is done in the center-of-mass frame.

(d) Find an expression for the matrix element 〈f |Hint|i〉 that is simplified as much as you

can make it without explicitly evaluating spinors or spin contractions. Work with box

normalization as in class and as reflected by the equations above.

(e) Now write out an expression for the differential cross section dσ/dΩ, where dΩ refers

to a cone of small solid angle in some direction, within which the final neutrino momentum
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lies. Simplify this as much as you can without doing spin sums. You may express things

in terms of the momentum pf found in part (c) and other convenient quantities. Hint: the

incident flux can be defined as the number of electrons per unit volume in the initial state

times the relative velocities of the initial electron and proton.

(f) Now assume that the incident electron and proton are unpolarized, and that we do not

care about the spins of the outgoing neutron and neutrino. Write an expression for the

effective differential cross section in this case, and take the limit mν → 0. At the same time

you may assume that the proton and neutron are essentially nonrelativistic, so E ≈ m and

v ≪ 1 for these particles. This is appropriate for the astrophysical application discussed

above. Do the spin sums to get a practical formula for the effective dσ/dΩ.

(g) Integrate this to get a total cross-section.

Of course the answer will depend on the constant g. By doing a separate calculation,

the neutron lifetime can be expressed in terms of g. Since the neutron lifetime is known

(about 15 minutes), one can get a numerical value of g, and hence real numbers that one can

use in the cross section for inverse beta decay. Such considerations are obviously important

in understanding supernova explosions.


