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Homework 24

Due Friday, April 13, 2012

Reading Assignment:

This week we finished the material on free particle solutions of the Dirac equation,

in which I followed Bjorken and Drell up through about p. 33, where they start to talk

about projection operators for spin (which we didn’t cover). The rest of the week was spent

covering various topics that amount to exploring the properties of the Dirac equation,

finding out what works and what gives difficulties of interpretation. These topics included:

the Gordon decomposition of the current; the Heisenberg equations of motion for the free

particle and their use in understanding the Zitterbewegung; the Klein paradox; the hydrogen

atom; and the Foldy-Wouthuysen transformation. The material on these topics is spread

among handwritten notes, Bjorken and Drell and Sakurai.

The Gordon decomposition of the current is discussed in Bjorken and Drell, pp. 36–37,

but my handwritten notes are more clear in terms of what the point is and the derivation

itself. The point is to try to understand the strange fact that the velocity operator in

the Dirac theory, v = ẋ = cα, is a purely spinor operator. The same operator appears

in the spatial part of the probability current, J = cψ†
αψ. One of the conclusions is

that the probability current should contain a spin contribution, and it does so even in the

nonrelativistic theory of a particle of nonzero spin (in the magnetization term).

I followed Sakurai, pp. 112–113 and 115–117, in deriving and solving the Heisenberg

equations of motion for the velocity for a free particle. Unfortunately there are no handwrit-

ten notes on this material. The point of doing this is that by taking expectation values of

the solution of the Heisenberg equations of motion with respect to a wave packet we obtain

the time-dependence of the expectation value of the velocity operator, which, as strange

as it may seem, is not a constant of the motion in the Dirac theory of the free particle

(although the momentum and energy are). One then finds that the time scale τ ∼ h̄/mc2

plays a role; this is the time scale associated with the rest mass of the particle. For times

much less than this time, the wave packet moves on a straight line with a constant velocity;

in an eigenfunction of one component of the velocity operator, this is the speed of light.

For much longer times, the wave packet moves with an average velocity given in terms of

the momentum and energy by v = c2p/E, which is the formula from classical relativity
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theory connecting the velocity with the momentum. The intuitive idea is that the particle

travels at the speed of light for a time h̄/mc2, covering a distance of h̄/mc (the Compton

wave length); then it changes direction randomly. Over times long compared to h̄/mc2 the

particle effectively gets smeared out over a distance of order of the Compton wavelength,

while undergoing a slower drift of velocity c2p/E. Both Bjorken and Drell and Sakurai

explore these properties by explicitly constructing a wave packet as a linear combination of

free particle solutions (pp. 36–38 of B&D, pp. 117–118 of Sakurai), and then looking at the

time evolution; in my opinion these calculations are messy and it’s easier just to sandwich

the solution of the Heisenberg equations of motion with a wave packet, as I argued in class.

In any case, the point is the Zitterbewegung.

The Klein paradox is discussed in Bjorken and Drell, pp. 40–42; I just presented the

main results in class (when the barrier height exceeds 2mc2, you start to get a reflected

wave with more flux than the incident flux, and a transmitted wave with a backwards flux).

The point is that this is a paradox of the Dirac equation that has no easy resolution in

the context that we are exploring, except to note that it is related to the negative energy

solutions for which we have no interpretation.

The hydrogen atom in the Dirac equation is discussed by Bjorken and Drell, pp. 52–

56. In class I just presented the main result (the energy eigenvalues), noting that when

expanded in powers of Zα they agree with the fine structure correction in hydrogen.

The FW transformation is discussed by B&D, pp. 46–52; my handwritten notes follow

this pretty closely, with some elaboration and clarifications. The main point of this is that

the Dirac equation can be expanded in powers of v/c, and, when carried through fourth

order, it gives all three of the fine structure corrections that we explored last semester.

One can only conclude that the Dirac equation, in spite of the paradoxes and difficulties of

interpretation, must have a great deal of truth in it.

1. This is Bjorken and Drell problem 4.2, with the steps laid out in more detail. Do this

problem in the following way. First, use natural units, h̄ = c = 1. Next, take the modified

Dirac equation to be
(

6p− q 6A−
κe

4m
σµνF

µν −m
)

ψ = 0, (1)

where m is the mass, q the charge, and κ the strength of the anomalous magnetic moment

term. For the electron, q = −e and κ = 0; for the proton, q = e and κ = 1.79; and for the

neutron, q = 0 and κ = −1.91. Beware, Bjorken and Drell define Fµν with an opposite sign
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compared to Jackson; I think Jackson’s formula,

Fµν =
∂Aν

∂xµ
−
∂Aµ

∂xν
, (2)

is more standard nowadays, and you should follow it.

(a) Write out the modified Dirac Hamiltonian, and show that it is Hermitian.

(b) Show that probability is conserved, i.e.,

∂Jµ

∂xµ
= 0, (3)

where Jµ is defined exactly as for the unmodified Dirac equation, Jµ = ψ̄γµψ.

(c) Covariance. Suppose ψ(x) satisfies the modified Dirac equation (1), and let

ψ′(x) = D(Λ)ψ(Λ−1x),

A′µ(x) = Λµ
ν A

ν(Λ−1x),

F ′µν(x) = Λµ
α Λν

β F
αβ(Λ−1x). (4)

Then show that ψ′(x) satisfies the modified Dirac equation (1), but with Lorentz trans-

formed fields A′µ(x) and F ′µν(x) instead of the original fields.

(d) Assume E = 0, B 6= 0 (in order to see what the effective magnetic moment of the

particle is). Perform a simple nonrelativistic approximation as in pp. 2–6 of the lecture

notes for March 9, and show that you get the right g-factors for the proton and neutron.

(e) Carry out a systematic Foldy-Wouthuysen transformation for the neutron as requested

by problem 4.2. Remember q = 0, which simplifies the calculation. Order the terms in

powers of v/c = η, as done in class, and carry the expansion out to order η4.


