
Physics 221B

Spring 2012

Homework 23

Due Friday, April 6, 2012

Reading Assignment:

Handwritten notes for the week on the Dirac equation. These notes follow Bjorken and

Drell pretty closely. See Bjorken and Drell, Chapter 2, pp. 22–26, and Chapter 3, pp. 28–33,

but you can skip the material on projection operators for spin. See also Sakurai, pp. 99–107.

1. Show that the quantity ψ̄(x)γ5γ
µψ(x) transforms as a pseudovector under Lorentz trans-

formations.

2. This is a version of Bjorken and Drell problem 1, p. 42. We will use the Hermitian

orthonormality relation (3.11) more than the adjoint version (3.9b). It may be proved just

by brute force multiplication of the columns of the matrix D(Λ), as suggested by Bjorken

and Drell, but a representation-independent proof is preferable.

(a) Let u(0) be any linear combination of the spinors w1(0) and w2(0), that is, let it be

the spinor part of a positive energy solution of the free particle Dirac equation for a particle

at rest. Similarly, let v(0) be any linear combination of w3(0) and w4(0). Let p be a

momentum and let

E = E(p) =
√

m2c4 + c2p2. (1)

Let b̂ = p/p and let λ be a rapidity defined by coshλ = E/mc2, sinhλ = p/mc. Let

Λ(p) = Λ(b̂, λ) be the boost that boosts a classical particle at rest to a particle with

momentum p. Also let D(p) = D
(

Λ(p)
)

. This is all exactly as in lecture. Finally, let

u(p) = D(p)u(0) and v(p) = D(p)v(0). Give a representation independent proof that

u(p)†v(−p) = 0. (2)

This proves Eq. (3.11) in the case that ǫr 6= ǫr′ .

(b) Define u(p) and v(p) as in part (a). Show that

u(p)†u(p) = v(p)†v(p) =
E

mc2
. (3)

This proves Eq. (3.11) in the case that r = r′.
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It remains to show that the spinors wr(p) are Hermitian orthogonal when ǫr = ǫr′ but

r 6= r′. This involves the spin which we won’t go into since the spin projection operators

were not covered in lecture.

3. Consider a Dirac electron (q = −e) in a uniform magnetic field, B = B0ẑ. Choose the

gauge,

A = B0xŷ, (4)

which is translationally invariant in the y-direction. This means that py will be a constant of

the motion (although you must distinguish between the kinetic and canonical momentum).

Here is some background on the nonrelativistic problem, which will save you some time.

Ignore the spin and the motion in the z-direction, for simplicity. Then the Schrödinger

equation is
1

2m

[

p̂2

x +
(

p̂y +mωx
)2]

ψ(x, y) = Eψ(x, y). (5)

Here we put hats on the momentum operators to distinguish them from the corresponding

eigenvalues (where relevant), which are c-numbers. For example, p̂y = −ih̄∂/∂y. Also, we

define

ω =
eB0

mc
. (6)

Then the wave equation (5) is separable, and has the solution,

ψ(x, y) = eipyy/h̄ un(ξ), (7)

where py is the eigenvalue of p̂y, where

ξ = x+
py

mω
, (8)

and where un is the usual, normalized Hermite function for the one-dimensional harmonic

oscillator with frequency ω,

un(ξ) =
(mω

πh̄

)1/4 1√
n!2n

Hn

(

√

mω

h̄
ξ
)

exp
(

−mωx
2

2h̄

)

. (9)

Here Hn is the usual Hermite polynomial, defined by Eq. (8.44). The energy eigenvalue for

the eigenfunction (7) is

E = (n+ 1

2
)h̄ω, (10)

where n = 0, 1, 2, . . . is the Landau level. The energy is independent of the quantum number

py. The wavefunction is like a ridge in the x-y plane, centered on x = −py/mω (i.e., on

ξ = 0), and running in the y-direction.
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(a) Solve the Dirac equation for the relativistic electron in the same magnetic field. This

time you must include the z-motion and the spin. Express the energy in terms of the

quantum numbers (n, py, pz,ms). Write out explicitly a complete set of positive energy

solutions as 4-component spinors. You need not normalize these solutions, and you may

ignore the negative energy solutions.

(b) Consider the motion of a Dirac electron in the field,

B = B1ẑ, E = E1x̂, (11)

where 0 < E1 < B1. The solution of the Dirac equation for this problem can be obtained

from the solution to part (a) by carrying out a Lorentz transformation. Find matrices Λ and

D(Λ) which will cause ψ′(x) to be the solution in the field (11) if ψ(x) is the solution in the

purely magnetic field of part (a). You will also need to find a relation between (E1, B1) and

B0. You need not write out the solution ψ′(x) explicitly, but do find the energy eigenvalues

in terms of the same quantum numbers (n, py, pz,ms) as in part (a).


