1 PROBABILITY IN QUANTUM MECHANICS!

From about the beginning of the twentieth century experimental
physics amassed an impressive array of strange phenomena which
demonstrated the inadequacy of classical physics. The attempts to
discover a theoretical structure for the new phenomena led at first to
a confusion in which it appeared that light, and electrons, behaved
sometimes like waves and sometimes like particles. This apparent
inconsistency was completely resolved in 1926 and 1927 in the theory
called quantum mechanics. The new theory asserts that there arc
experiments for which the exact outcome is fundamentally unpredict-
able and that in these cases one has to be satisfied with computing
probabilities of various outcomes. But far more fundamental was the
discovery that in nature the laws of combining probabilities were not
those of the classical probability theory of Laplace. The quantum-
mechanical laws of the physical world approach very closely the laws
of Laplace as the size of the objects involved in the experiments
increases. Therefore, the laws of probabilities which are convention-
ally applied are quite satisfactory in analyzing the behavior of the
roulette wheel but not the behavior of & single electron or a photon
of light. ‘

A Conceptual Experiment. The concept of probability is not
altered in quantum mechanics. When we say the probability of a
certain outeome of an experiment is p, we mean the conventional
thing, i.e., that if the experiment is repeated many times, one expects
that the fraction of those which give the outcome in question is
roughly p. We shall not be at all concerned with analyzing or defin-
ing this concept in more detail; for no departure from the concept
used in classical statistics is required.

What is changed, and changed radically, is the method of calculating
probabilities, The effect of this change is greatest when dealing with
objects of atomic dimensions. For this reason we shall illustrate the
laws of quantum mechanics by describing the results to be expected
in some conceptual experiments dealing with a single electron.

Our imaginary experiment is illustrated in Fig. 1-1. At A we have
a source of electrons S. The electrons at S all have the same energy
but come out in all directions to impinge on a screen B. The sereen

t Much of the material appearing in this chapter was originally presented as a
lecture by R. P. Feynman and published as The Concept of Probability in Quantum
Mechanics in the Second Berkeley Symposium on Mathematical Statistics and
Probability, University of California Press, Berkeley, Calif., 1951.
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Fig. 1-1 The experimentzl arrangement. Electrons emitted at A make their way to the

detector at screen C, but a screen B with two holes is interposed. The detector registers &
count for each electron which arrives; the fraction which arrives when the detector is
placed at a distance x from the center of the screen is measured and plotted against z, as in
Fig. 1-2.

B has two holes, 1 and 2, through which the electrons may pass.
Finally, behind the screen B at a plane ¢ we have a detector of elec-
trons which may be placed at various distances x from the center of
the screen.

If the detector is extremely sensitive (as a Geiger counter is) it will
be discovered that the current arriving at z is not continuous, but
corresponds to a rain of particles. If the intensity of the source S is
very low, the detector will record pulses representing the arrival of
individual particles, separated by gaps in time during which nothing
arrives. This is the reason we say electrons are particles. If we had
detectors simultaneously all over the screen C, with a very weak source
S, only one detector would respond, then after a little time, another
would record the arrival of an electron, ete. There would never be a
half response of the detector; either an entire electron would arrive
or nothing would happen. And two detectors would never respond
simultancously (except for the coincidence that the source emitted
two electrons within the resolving time of the detectors—a coincidence
whose probability can be decreased by further decrease of the source
intensity). In other words, the detector of Fig. 1-1 records the pas-
sage of a single corpuscular entity traveling from S through a hole in
screen B to the point x.

This particular experiment has never been done in just this way.
In the following description we are stating what the results would be
according to the laws which fit every experiment of this type which
has ever been performed. Some experiments which directly illus-
trate the conclusions we are reaching here have been done, but such
experiments are usually more complicated. We prefer, for pedagogical
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reasons, to select experiments which are the simplest in principle and
disregard the difficulties of actually doing them.

Incidentally, if one prefers, one could just as well use light instead
of electrons in this experiment. The same points would be illustrated.
The source S could be a source of monochromatic light and the sensi-
tive detector a photoelectric cell or, better, a photomultiplier which
would record pulses, each being the arrival of a single photon.

What we shall measure for various positions z of the detector is the
mean number of pulses per second. In other words, we shall deter-
mine experimentally the (relative) probability P that the electron
passes from § to z, as a function of z.

The graph of this probability as a function of z is the complicated
curve illustrated qualitatively in Fig. 1-2a. It has several maxima
and minima, and therc are locations near the center of the sereen at
which electrons hardly ever arrive. Tt is the problem of physics to
discover the laws governing the structure of this curve.

We might at first suppose (since the electrons behave as particles)
that

I. Each electron which passes from S to z must go through either
hole 1 or hole 2. As a consequence of I we expect that:
1L. The chance of arrival at = should be the sum of two parts, P,,
the chance of arrival coming through hole 1, plus P;, the chance of
arrival coming through hole 2.

We may find out if this is true by direct experiment. Each of the
component probabilities is easy to determine. We simply close hole
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Fig. 1-2 Results of the experiment. Probability of arrival of electrons at z plotted
against the position z of the detector. The result of the experiment of Fig. 1-1 is plotted
here at (a). If only one hole is open, so the electrons can go through just hole 1, the result
is (b). For just hole 2 open, it is (¢). If we imagine each electron just goes through one
hole or the other, we expect the curve (d) == (b) + (¢) when both holes are open. This is
considerably different from what we actually get, (a).
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Fig. 1-3 An analogous experiment in wave interference. The complicated curve P(z) in
Fig. 1-2a is the same as the intensity I(z) of waves which would arrive at x starting from S
and coming through the holes. At some points z the wavelets from holes 1 and 2 interfere
destructively (e.g., a crest from hole 1 arrives at the same time as a trough from hole 2); at
others, constructively. This produces the complicated minima and maxima of the curve

I(z).

2 and measure the chance of arrival at z with only hole 1 open. This
gives the chance P, of arrival at z for electrons coming through 1.
The result is given in Fig. 1-2b. Similarly, by closing 1 we find the
chance P, of arrival through hole 2 (Fig. 1-2¢).

The sum of these (Fig. 1-2d) clearly does not agree with the curve (a).
Hence, experiment tells us definitely that P % P; + P,, or that 1I
is false.

The Probability Amplitude. The chance of arrival at z with
both holes open is not the sum of the chance with just hole 1 open
plus that with just hole 2 open.

Actually, the complicated curve P(zx) is familiar, inasmuch as it is
exactly the intensity of distribution in the interference pattern to be
expected if waves starting from S pass through the two holes and
impinge on the screen C (Fig. 1-3). The easiest way to represent
wave amplitudes is by complex numbers. We can state the correct
law for P(x) mathematically by saying that P(x) is the absolute square
of a certain complex quantity (if electron spin is taken into account,
it is a hypercomplex quantity) ¢(z) which we call the probabelity ampli-
tude of arrival at z. TFurthermore, ¢(z) is the sum of two contribu-
tions: ¢, the amplitude of arrival through hole 1, plus ¢, the ampli-
tude of arrival through hole 2. In other words,

III. There are complex numbers ¢; and ¢, such that
P = ¢ (1-1)
¢=¢1+ ¢ (1-2)
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and
Py = |y Py = |¢s)? (1-3)

In later chapters we shall discuss in detail the actual calculation of
¢; and ¢,. Here we say only that ¢, for example, may be calculated
as a solution of a wave equation representing waves spreading from
the source to 1 and from 1 to z. This reflects the wave properties of
electrons (or in the case of light, photons).

To summarize: We compute the intensity (i.e., the absolute square
of the amplitude) of waves which would arrive in the apparatus at z
and then interpret this intensity as the probability that a particle will
arrive at z.

Logical Difficulties. What is remarkable is that this dual use of
wave and particle ideas does not lead to contradictions. This is so
only if great care is taken as to what kind of statements one is per-
mitted to make about the experimental situation.

To discuss this point in more detail, consider first the situation whieh
arises from the observation that our new law III of composition of
probabilities implies, in general, that it is not true that P = P; 4 Ps.
We must conclude that when both holes are open, it is not true that
the particle goes through one hole or the other. For if it had to go
through one or the other, we could classify all the arrivals at z into
two disjoint classes, namely, those arriving via hole 1 and those arriv-
ing through hole 2; and the frequency P of arrival at « would surely
be the sum of the frequency P; of particles coming through hole 1 and
the frequency P, of those coming through hole 2.

To extricate ourselves from the logical difficulties introduced by this
startling conclusion, we might try various artifices. We might say,
for example, that perhaps the electron travels in a complex trajectory
going through hole 1, then back through hole 2 and finally out through
1 in some complicated manner. Or perhaps the electron spreads out
somehow and passes partly through both holes so as to eventually pro-
duce the interference result III. Or perhaps the chance P, that the
electron passes through hole 1 has not been determined correctly
inasmuch as closing hole 2 might have influenced the motion near
hole 1. Many such classical mechanisms have been tried to explain
the result. When light photons are used (in which case the same law
III applies), the two interfering paths 1 and 2 can be made to be many
centimeters apart (in space), so that the two alternative trajectories
must almost certainly be independent. That the actual situation is
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more profound than might at first be supposed is shown by the follow-
ing experiment.

The Effect of Observation. We have concluded on logical
grounds that since P 5 P; + Ps, it is not true that we can expect to
analyze the electron’s motion by the simple assumption that the elec-
tron passes through either hole 1 or hole 2. But it is easy to design
an experiment to test our conclusion directly. We have merely to
have a source of light behind the holes and watch to see through which
hole the electron passes (see Fig. 1-4). For electrons scatter light, so
that if light is scattered behind hole 1, we may conclude that an elec-
tron passed through hole 1; and if it is scattered in the neighborhood
of hole 2, the electron has passed through hole 2.

The result of this experiment is to show unequivocally that the elec-
tron does pass through either hole 1 or hole 2! That is, for every elec-
tron which arrives at the screen C (assuming the light is strong enough
that we do not miss seeing it) light is scattered either behind hole 1
or behind hole 2, and never (if the source S is very weak) at both places.
(A more delicate experiment could even show that the charge passing
through the holes passes through either one or the other and is in all
cases the complete charge of one electron and not a fraction of it.)

It now appears that we have come to a paradox. For suppose that
we combine the two experiments. We watch to see through which
hole the electron passes and at the same time measure the chance that
the electron arrives at z. Then for each electron which arrives at =
we can say experimentally whether it came through hole 1 or hole 2.
First we may verify that P; is given by curve (b), because if we
select, of the electrons which arrive at z, only those which appear to
come through hole 1 (by scattering light there), we find they are,

Fig. 1-4 A modification of the
experiment of Fig. 1-1. Here
we place a light source L behind
the screen B and look for light
scattered by the electrons pass-
ing through hole 1 or hole 2.
With a strong light source every
electron is indeed found to pass
by one or the other hole. But
now the probability of arrival
at z is no longer given by the
curve of Fig. 1-2a, but is instead
given by Fig. 1-2d.
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indeed, very nearly distributed as in curve (b). (This result is obtained
whether hole 2 is open or closed, so we have verified that there is no
subtle influence of closing 2 on the motion near hole 1.) If we select
the electrons scattering light at 2, we get (very nearly) P: of Fig. 1-2¢.
But now each electron appears at either 1 or 2 and we can separate
our electrons into disjoint classes. So, if we take both together, we
must get the distribution P = P; + P, illustrated in Fig. 1-2d. And
experimentally we do! Somehow now the distribution does not show
the interference effects 11T of curve (a)!

What has been changed? When we watch the electrons to see
through which hole they pass, we obtain the result P = P, + P,.
When we do not watch, we get a different result,

P =|¢1+ ¢3|># Py + P2

Just by watching the eleetrons, we have changed the chance that
they arrive at z. How is this possible? The answer is that, to watch
them, we used light and the light in collision with the electron may
be expected to alter its motion, or, more exactly, to alter its chance
of arrival at z.

On the other hand, can we not use weaker light and thus expect a
weaker effect? A negligible disturbance certainly cannot be presumed
to produce the finite change in distribution from (a) to (d). But weak
light does not mean a weaker disturbance. Light comes in photons
of energy hv, where v is the frequency, or of momentum &/X\, where M
is the wavelength. Weakening the light just means using fewer pho-
tons, so that we may miss seeing an electron. But when we do see
one, it means a complete photon was scattered and a finite momentum
of order h/\ is given to the electron.

The electrons that we miss seeing are distributed according to the
interference law (a), while those we do see and which therefore have
scattered a photon arrive at z with the probability P = P, 4+ P;in (d).
The net distribution in this case is therefore the weighted mean of (a)
and (d). In strong light when nearly all electrons scatter light, it is
nearly (d); and in very weak light, when very few scatter, it becomes
more like (a).

It might still be suggested that since the momentum carried by the
light is /), weaker effects could be produced by using light of longer
wavelength A. But there is a limit to this. If light of too long a
wavelength is used, we shall not be able to tell whether it was scattered
from behind hole 1 or hole 2; for the source of light of wavelength A
cannot be located in space with precision greater than order A.

We thus see that any physical agency designed to determine through
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which hole the electron passes must produce, lest we have a paradox,
enough disturbance to alter the distribution from (a) to (d).

It was first noticed by Heisenberg, and stated in his uncertainty
principle, that the consistency of the then-new mechanics required a
limitation to the subtlety to which experiments could be performed.
In our case the principle says that an attempt to design apparatus to
determine through what hole the electron passed, and delicate enough
so as not to deflect the electron sufficiently to destroy the interference
pattern, must fail. It is clear that the consistency of quantum
mechanics requires that it must be a general statement involving all
the agencies of the physical world which might be used to determine
through which hole an electron passes. The world cannot be half
quantum-mechanical, half classical. No exception to the uncertainty
principle has been discovered.

THE UNCERTAINTY PRINCIPLE

We shall state the uncertainty principle as follows: Any determination
of the alternative taken by a process capable of following more than
one alternative destroys the interference between alternatives.
Heisenberg’s original statement of the uncertainty principle was not
given in the form we have used here. We shall interrupt our argu-
ment for a few paragraphs to discuss Heisenberg's original statement.

In classical physics a particle can be described as moving along a
definite trajectory and having, for example, a precisc position and
velocity at any particular time. Such a picture would not lead to the
odd results that we have seen arc characteristic of quantum mechanies.
Heisenberg’s uncertainty principle gives the limits of accuracy of such
classical ideas. Tor cxample, the idea that a particle has both a defi-
nite position and a definite momentum has its limitations. A real
system (i.e., one obeying quantum mechanics) looked upon from a
classical view appears to be one in which the position or momentum
is not definite, but is uncertain. The uncertainty in position can be
reduced by eareful measurement, and other measurements may make
the momentum definite. But, as Heisenberg stated in his principle,
both cannot be accurately known simultaneously; the product of the
uncertainties of momentum and position involved in any experiment
cannot be smaller than a number with the order of magnitude of .}
That such a result is required by physical consistency in the situation

th = h/2r = 1.054 X 10-%7 erg-sec, where h = Planck’s constant,
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we have been discussing can be shown by considering still another way
of trying to determine through which hole the electron passes.

Example. Notice that if an electron is deflected in passing through
one of the holes, its vertical component of momentum is changed.
Furthermore, an electron arriving at the detector z after passing
through hole 1 is deflected by a different amount, and thus suffers a
different change in momentum, than an electron arriving at z via
hole 2. Suppose that the screen at B is not rigidly supported, but is
free to move up and down (Fig. 1-5). Any change in the vertical
component of the momentum of an electron upon passing through a
hole will be accompanied by an equal and opposite change in the
momentum of the screen. This change in momentum can be meas-
ured by measuring the velocity of the screen before and after the pas-
sage of an electron. Call dp the difference in momentum change
between electrons passing through hole 1 or hole 2. Then an unam-
biguous determination of the hole used by a particular electron requires
a momentum determination of the sereen to an accuracy of better
than §p.

If the experiment is set up in such a way that the momentum of
screen B can be measured to the required accuracy, then, since we can

Fig. 1-5 Another modification of the experiment of Fig. 1-1. The screen B is left free to
move vertically. If the electron passes hole 2 and arrives at the detector (at z = 0, for
example), it is deflected upward and the screen B should recoil downward. The hole
through which the electron passes can be determined for each Dassage by starting with the
screen at rest and measuring whether it is recoiling up or down afterward., According to
Heisenberg’s uncertainty principle, however, such precise momentum measurements on
screen B would be inconsistent with accurate knowledge of its vertical position, so we could
not be sure that the center line of the holes is correctly set. Instead of P(z) of Fig. 1-2a, we
- get this smeared a little in the vertical direction, sp it looks like Fig. 1-2d.
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determine the hole passed through, we must find that the resulting
distribution of electrons is that of curve (d) of Fig. 1-2. The inter-
ference pattern of curve (a) must be lost. How can this happen?
To understand, note that the construction of a distribution curve in
the plane C requires an accurate knowledge of the vertical position
of the two holes in screen B. Thus we must measure not only the
momentum of screen B but also its position. If the interference pat-
tern of curve (a) is to be established, the vertical position of B must
be known to an accuracy of better than d/2, where d is the spacing
between maxima of the curve (a). For suppose the vertical position
of B is not known to this accuracy; then the vertical position of every
point in Fig. 1-2a cannot be specified with an accuracy greater than
d/2, since the zero point of the vertical scale must be lined up with
some nominal zero point on B. Then the value of P at any particular
height z must be obtained by averaging over all values within a dis-
tance d/2 of z. Clearly, the interference pattern will be smeared out
by this averaging process. The resulting curve will look like Fig. 1-2d.

The interference pattern in the original experiment is the sign of a
wave-like behavior of the electrons. The pattern is the same for any
wave motion, so we may use the well-known result from the theory of
light diffraction that the relation between the separation a of the holes,
the distance ! between screen B and the plane C, the wavelength \ of
the light, and d is

(14)
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as shown in Fig. 1-6. In Chap. 3 we shall find that the wavelength
of the electron waves is intimately connected with the momentum of
the electron by the relation

If p is the total momentum of an electron (and we assume all the elee-
trons have the same total momentum), then for I > a

5_]) ~ a (1'6)

d=— 1-7)
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Fig. 1-6 Two beams of light, starting in phase at holes 1 and 2, will interfere construc-
tively when they reach the screen C if they take the same time to travel from Bto ¢. This
means that a maximum in the diffraction pattern for light beams passing through two holes
will occur at the center of the screen. As we move down the screen, the next maximum will
oceur at a distance d, which is far enough from the center that, in traveling to this point,
the beam from hole 1 will have traveled exactly one wavelength A farther than the beam
from hole 2.
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Fig.1-7 The deflection of an electron in passing through a hole in the screen B is actually
a change in momentum sp. This change amounts to the addition of a small component of
momentum in a direction approximately perpendicular to the original momentum vector.
The change in energy is completely negligible. For small deflection angles, the total
momentum vector keeps the same magnitude (approximately). Then the deflection angle
is represented to a very good approximation by |sp|/|p|. If two electrons, one starting
from hole 1 with momentum p, and the other starting from hole 2 with momentum ps,
reach the same point on the screen C, then the angles through which they were deflected
must differ by approximately a/l. Since we cannot say through which hole an electron
has come, the uncertainty in the vertical component of momentum which the electron
receives on passing through the screen B must be equivalent to this uncertainty in deflection
angle. This gives relation |p; ~ p2|/|p| = [6p|/Ip| = a/L. :
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Since experimentally we find that the interference pattern has been
lost, it must be that the uncertainty 6z in the measurement of the
position of B is larger than d/2. Thus

op oz > —g (1-8)

which agrees (in order of magnitude) with the usual statement of the
uncertainty principle.

A similar analysis can be applied to the previous measuring device
where the scattering of light was used to determine through which
hole the electron passed. Such an analysis produces the same lower
limit for the uncertainties of measurement.

The uncertainty principle is not “proved” by considering a few such
experiments. It is only illustrated. The evidence for it is of two
kinds. First, no one has yet found any experimental way to defeat
the limitations in measurements which it implies. Second, the laws
of quantum mechanics seem to require it if their consistency is to be
maintained, and the prediction of these laws has been confirmed again
and again with great precision.

INTERFERING ALTERNATIVES

Two Kinds of Alternatives. From a physical standpoint the two
routes are independent alternatives, yet the implication that the prob-
ability is the sum P; + P,isfalse. This means that either the premise
or the reasoning which leads to such a conclusion must be false. Since
our habits of thought are very strong, many physicists find that it is
much more convenient to deny the premise than to deny the reasoning.
To avoid the logical inconsistencies into which it is so easy to stumble,
they take the following view: When no attempt is made to determine
through which hole the electron passes, one cannot say it must pass
through one hole or the other. Only in a situation where apparatus
is operating to determine through which hole the electron goes is it
permissible to say that it passes through one or the other. When you
watch, you find that it goes through either one hole or the other hole;
but if you are not looking, you cannot say that it goes either one way
or the other! Nature demands that we walk a logical tightrope if we
wish to describe her.

Contrary to that way of thinking, we shall in this book follow the
suggestion made in the first part of this chapter and deny the reason-
ing; i.e., we shall not compute probabilities by adding probabilities for

e s—— GOSN BRI N o s e e s



44

intum mechanics and path integrals

all alternatives. In order to make definite the new rules for combining
probabilities, it will be convenient to define two meanings for the word
“glternative.” The first of these meanings carries with it the concept
of exclusion. Thus holes 1 and 2 are exclusive alternatives if one of
them is closed or if some apparatus that can unambiguously determine
which hole is used is operating. The other meaning of the word
“alternative’’ carries with it a concept of combination or interference.
(The term ¢nlerference has the same meaning here as it has in optics,
i.e., either constructive or destructive interference.) Thus we shall
say, holes 1 and 2 present inferfering olternatives to the electron when
(1) both holes are open and (2) no attempt is made to determine
through which hole the electron passes. When the alternatives are
of this interfering type, the laws of probability must be changed to
the form given in Egs. (1-1) and (1-2).

The concept of interfering alternatives is fundamental to all of
quantum mechanics. In some situations we may have both kinds of
alternatives present. Suppose we ask, in the two-hole experiment,
for the probability that the electron arrives at some point, say, within
1 em of the center of the screen. We may mean by that the proba-
bility that if there were counters arranged all over the screen (so one
or another would go off when the electron arrived), the counter
which went off was within 1 em of z = 0. Here the various possi-
bilities are that the electron arrives at some counter via some hole.
The holes represent interfering alternatives, but the counters are exclu-
sive alternatives. Thus we first add ¢, + ¢ for a fixed z, square that,
and then sum these resultant probabilities over x from —1 to +1 cm.

1t is not hard, with a little experience, to tell which kind of alterna-
tives is involved. For example, suppose that information about the
alternatives is available (or could be made available without altering
the result), but this information is not used. Nevertheless, in this
case a sum of probabilities (in the ordinary sense) must be carried out
over exclusive alternatives. These exclusive alternatives are those
which could have been separately identified by the information.

Some Illustrations. When alternatives cannot possibly be
resolved by any experiment, they always interfere. A striking illus-
tration of this is the scattering of two nuclei at 90°, say, in the center-
of-gravity system, as illustrated in Fig. 1-8. Suppose A represents
an « particle and B some other nucleus. Ask for the probability that
A is scattered to position 1 and B to 2. The amplitude is, say,
¢45(1,2). The probability of this is p = |$42(1,2)|2. Suppose we do
not distinguish what kind of nucleus arrives at 1, that is, whether it
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4 Fig. 1.8 Scattering of one
n"l nucleus by another in the center-
of-gravity system. The scat-
tering of two identical nuclei
shows striking interference effects.
There are two interfering alterna-
tives here. The particle which
arrives at 1, say, can have been
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that which started either from A
or from B. If the original nuclei
were not identical, tests of
1 identity at 1 could determine
which alternative had actually

been taken, so they are exclusive
| alternatives and the special inter-
LIJ ference effects do not arise in

2 this case.

is Bor A. Ifitis B, the amplitude is ¢45(2,1) [which equals ¢45(1,2),
because we have taken a 90° angle]. The chance that some nucleus
arrives at 1 and the other at 2 is

l9a5(L,2)|2 + |¢45(2,1)|* = 2p (1-9)

We have added the probabilities. The cases A arrives at 1 and B
arrives at 1 are exclusive alternatives because we could, if we wished,
determine the character of the nucleus at 1 without disturbing the
previous scattering process.

But if A is an « particle, what happens if B is also an « particle?
Then no experiment can distinguish which is which, and we cannot
know when one arrives at 1 whether it is A or B. We have interfering
alternatives, and the probability is

[¢48(1,2) + $48(2,1)|> = 4p (1-10)

This interesting result is readily verified experimentally.

If electrons scatter electrons, the result is different in two ways.
First, the electron has a quality we call spin, and a given electron may
be in one of two states called spin up and spin down. The spin is not
changed to first approximation for scattering at low energy. The spin
carries a magnetic moment. At low velocities the main forces are
electrical, owing to charge, and the magnetic influences make only a
small correction, which we neglect. So if electron 4 has spin up and
B has spin down, we could later tell which arrived at 1 by measuring
its spin. If up, it is 4; if down, it is B. The scattering probability
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is then
[6(1,2)[2 + [¢(2,1)|* = 2p (1-11)

in this case.
If, however, both A and B start with spin up, we cannot later tell
which is which and we would expect

|#45(1,2) + ¢45(2,1)]* = 4p (1-12)

Actually this is wrong and, remarkably, eleetrons obey a different rule.
The amplitude for an event in which the identity of a pair of electrons
is reversed contributes 180° out of phase. That is, the case of both
spin up gives

|645(1,2) — ¢45(2,1)|? (1-13)

In our case of 90° scattering ¢45(1,2) = ¢45(2,1), so this is zero.

Fermions and Bosons. This rule of the 180° phase shift for alter-
natives involving exchange in identity of electrons is very odd, and
its ultimate reason in nature is still only imperfectly understood.
Other particles besides electrons obey it. Such particles are called
fermions, and are said to obey Fermi, or antisymmetric, statistics.
Electrons, protons, neutrons, neutrinos, and g mesons are fermions.
So are compounds of an odd number of these such as a nitrogen atom,
which contains seven electrons, seven protons, and seven neutrons.
This 180° rule was first stated by Pauli and is the full quantum-
mechanical basis of his exclusion principle, which controls the char-
acter of the chemists’ periodic table.

Particles for which interchange does not alter the phase are called
bosons and are said to obey Bose, or symmetrical, statistics. Exam-
ples of bosons are photons, » mesons, and systems containing an even
number of Fermi particles such as an « particle, which is two protons
and two neutrons. All particles are either one or the other, bosons
or fermions. These interference properties can have profound and
mysterious effects. For example, helium liquid made of atoms of
‘atomic mass 4 (bosons) at temperatures of one or two degrees Kelvin
can flow without any resistance through small tubes, whereas the
liquid made of atoms of mass 3 (fermions) does not have this property.

The concept of identity of particles is far more complete and defi-
nite in quantum mechanics than it is in classical mechanics. Classi-
cally, two particles which seem identical could be nearly identical, or
identical for all practical purposes, in the sense that they may be so
closely equal that present experimental techniques cannot detect any
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difference. However, the door is left open for some future technique
to establish the difference. In quantum mechanics, however, the
situation is different. We can give a direct test to determine whether
or not particles are completely indistinguishable.

If the particles in the experiment diagramed in Fig. 1-8, starting
at A and B, were only approximately identical, then improvements
in experimental techniques would enable us to determine by close
scrutiny of the particle arriving at 1, for example, whether it came
from A or B. In this situation the alternatives of the two initial
positions must be exclusive, and there must be no interference between
the amplitudes describing these alternatives. Now the important
point is that this act of scrutiny would take place after the scattering
had taken place. This means that the observation could not possibly
affect the scattering process, and this in turn implies that we would
expect no interference between the amplitudes describing the alterna-
tives (that it is either the particle from 4 or the particle from B which
arrives at 1). In this case we must conclude from the uncertainty
principle that there is no way, even in principle, to ever distinguish
between these possibilities. That is, when a particie arrives at 1, it
is completely impossible by any test whatsoever, now or in the future,
to determine whether the particle started from A or B. In this more
rigorous sense of identity, all electrons are identical, as are all pro-
tons, etc.

As a second example we consider the scattering of neutrons from a
crystal. When neutrons of wavelength somewhat shorter than the
atomic spacing are scattered from the atoms in a crystal, we get very
strong interference effects. The neutrons emerge only in certain dis-
crete directions determined by the Bragg law of reflection, just as for
X rays. The interfering alternatives which enter this example are
the alternative possibilities that it is this, or that, atom which does the
scattering of a particular neutron. (The amplitude to scatter neu-
trons from any atom is so small that we need not consider alternatives
in which a neutron is scattered by more than one atom.) The waves
of amplitude describing the motion of a neutron which start from these
atoms interfere constructively only in certain definite directions.

Now there is an interesting complication which enters this appar-
ently simple picture. Neutrons, like electrons, ecarry a spin, which
can be analyzed in two states, spin up and spin down. Suppose the
scattering material is composed of an atomic species which has a simi-
lar spin property, such as carbon-13. In this case an experiment will
reveal two apparently different types of scattering. It is found that
besides the scattering in discrete directions, as described in the pre-
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ceding paragraph, there is a diffused scattering in all directions. Why
should this be?

A clue to the source of these two types of scattering is provided by
the following observation. Suppose all the neutrons which enter the
experiment are prepared in such a manner that their spin direction
is up. If the spin direction of the emerging neutrons is analyzed, it
will be found that there are some up and some down; those which
still have spin up are scattered only at the discrete Bragg angles, while
those whose spin has been changed to down come out scattered dif-
fusely in all directions!

Now in order that a neutron flip its spin from up to down, the law
of conservation of angular momentum requires that the spin of the
scattering nucleus be changed from down to up. 'Therefore, in prin-
ciple, the particular nucleus which was responsible for scattering that
particular neutron could be determined. We could, in principle, note
down before the experiment the spin state of all the scattering nuclei
in the crystal. Then, after the neutron is scattered, we could rein-
vestigate the crystal and see which nucleus had changed its spin
from down to up. If no crystal nucleus underwent such a change in
spin, then neither did the neutron, and we cannot tell from which
nucleus the neutron was actually scattered. In this case the alterna-
tives interfere and the Bragg law of scattering results.

If, on the other hand, one crystal nucleus is found to have changed
spin, then we know that this nucleus did the scattering. There are
no interfering alternatives. The spherical waves of amplitude which
emerge from this particular nucleus describe the motion of the scat-
tered neutron, and only the waves emerging from this nucleus enter
into that description. In this case there is equal likelihood to find
the scattered neutron coming out in any direction.

The concept of searching through all the nuclei in a crystal to find
which one has changed its spin state is surely a needle-in-the-haystack
type of activity, but nature is not concerned with the practical diffi-
culties of experimentation. The important fact is that in principle it
is possible without producing any disturbance of the scattered neu-
tron to determine (in this latter case where the spin states change)
which crystal nucleus actually did the scattering. The existence of
this possibility means that even if we do not actually carry out this
determination, we are nevertheless dealing with exclusive (and thus
noninterfering) alternatives.

On the other hand, the fact that we get interference between alter-
natives in the situation where the spin states of the neutrons were not
changed means that it is impossible, even in principle, to ever discover
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which particular erystal nucleus did the scattering—impossible, at
least, without disturbing the situation during or before the scattering.

4 SUMMARY OF PROBABILITY CONCEPTS

Alternatives and the Uncertainty Principle. The purpose of
this introductory chapter has been to explain the meaning of a proba-
bility amplitude and its importance in quantum mechanies and to dis-
cuss the rules for manipulation of these amplitudes. Thus we have
stated that there is a quantity called a probability amplitude associated
with every method whereby an event in nature can take place. For
example, an electron going from a source at S (Fig. 1-1) to a detector
at z has one amplitude for completing this course while passing through
hole 1 of the screen at B and another amplitude in passing through
hole 2. Further, we can associate an amplitude with the overall event
by adding together the amplitudes of each alternative method. Thus,
for example, the overall amplitude for arrival at z is given in Eq.
(1-2) as

¢ =¢1+ ¢ (1-14)

Next, we interpret the absolute square of the overall amplitude as
the probability that the event will happen. For example, the proba-
bility that an electron reaches the detector is

P = |¢: + ¢of? (1-15)

If we interrupt the course of the event before its conclusion with
an observation on the state of the particles involved in the event, we
disturb the construction of the overall amplitude. Thus if we observe
the system of particles to be in one particular state, we exclude the
possibility that it can be in any other state, and the amplitudes asso-
ciated with the excluded states can no longer be added in as alterna-
tives in computing the overall amplitude. For example, if we deter-
mine with the help of some sort of measuring equipment that the
electron passes through hole 1, the amplitude for arrival at the detector
is just ¢;. Further, it does not matter if we actually observe and
record the outcome of the measurement or not, so long as the meas-
uring equipment is working. Obviously, we could observe the out-
come at any time we wished. The operation of the measuring equip-
ment is sufficient to disturb the system and its probability amplitude.

This latter fact is the basis of the Heisenberg uncertainty principle,

e
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which states that there is a natural limit to the subtlety of any experi-
ment or the refinement of any measurement.

The Structure of the Amplitude. The amplitude for an event
is the sum of the amplitudes for the various alternative ways that the
event can occur. This permits the amplitude to be analyzed in many
different ways depending on the different classes into which the alter-
natives can be divided. The most detailed analysis results from con-
sidering that a particle going from 4 to B, for example, in a given time
interval, can be considered to have done this by going in a certain
motion (position vs. time) or path in space and time. 'We shall there-
fore associate an amplitude with each possible motion. The total
amplitude will be the sum of a contribution from each of the paths.

This idea can be made more clear by a further consideration of our
experiment with the two holes. Suppose we put a couple of extra
screens between the source and the hole, Call these sereens D and E.
In each of them we drill a few holes which we number D,, D, . . .
and Ey, E, ... (Fig. 1-9). For simplicity, we shall assume the
electrons are constrained to move in the ry plane. Then there are
several alternative paths which an electron may take in going from
the source to the hole in screen B. It could go from source to Dy,
and then E;, and then the hole 1; or it could go from the source to
D;, then E), and finally to the hole 1, etc. Each of these paths has
its own amplitude. The complete amplitude is the sum of all of them.

Next, suppose we continue to drill holes in the screens D and E
until there is nothing left of the screens. The path of an electron
must now be specified by the height xp at which the electron passes
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Fig. 1-9 When several holes are drilled in the screens D and E placed between the source
in screen A and the final position in screen C, several alternative routes are available for
each electron. For each of these routes there is an amplitude. The result of any experi-
ment in which all of the holes are open requires the addition of all of these amplitudes, one
for each possible path.
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Fig. 1-10 More and more holes are cut in the screens at yp and yg. Eventually, the
screens are completely riddled with holes, and the electron has a continuous range of posi-
tions, up and down along each screen, at which it can pass through the position of the

screen.

In this case the sum of alternatives becomes a double integral over the continuous

parameters zp and zg describing the alternative heights at which the electron passes the
position of the screens at yp and yz.

the position yp at the nonexistent screen D, together with the height
zg, at the position yg, as in Fig. 1-10. To each pair of heights there
corresponds an amplitude. The principle of superposition still applies,
and we must take the sum (or by now, the integral) of these amplitudes
over all possible values of zp and zg.

Clearly, the next thing to do is to place more and more screens
between the source and the hole 1 and in each screen drill so many
holes that there is nothing left. Throughout this process we continue
to refine the definition of the path of the electron, until finally we
arrive at the sensible idea that a path is merely height as a particular
function of distance, or z(y). We also continue to apply the principle
of superposition, until we arrive at the integral over all paths of the
amplitude for each path.

Now we can make a still finer specification of the motion. Not
only can we think of the particular path z(y) in space, but we can
specify the fyme at which it passes each point in space. That is, a
path will (in our two-dimensional case) be given if the two functions
z(t), y(t) are given. Thus we have the idea of an amplitude to take
a certain path z(t), y(f). The total amplitude to arrive is the sum or
integral of this amplitude over all possible paths. The problem of
defining this concept of a sum or integral over all paths in a mathe-
matically more precise way will be taken up in Chap. 2.

Chapter 2 also contains the formula for the amplitude for any
given path. Once this is given, the laws of nonrelativistic quantum
mechanics are completely stated, and all that remains is a demonstra-
tion of the application of these laws in a number of interesting special

cases.
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.. 3 SOME REMAINING THOUGHTS

We shall find that in quantum mechanies, the amplitudes ¢ are solu-
tions of a completely deterministic equation (the Schrédinger equation).
Knowledge of ¢ at ¢ = 0 implies its knowledge at all subsequent times.
The interpretation of |¢|> as the probability of an event is an indeter-
ministic interpretation. It implies that the result of an experiment
is not exactly predictable. It is very remarkable that this interpre-
tation does not lead to any inconsistencies. That it is true has been
amply demonstrated by analyses of many particular situations by
Heisenberg, Bohr, Born, von Neumann, and many other physicists.
In spite of all these analyses the fact that no inconsistency can arise
is not thoroughly obvious. For this reason quantum mechanics
appears as a difficult and somewhat mysterious subject to & beginner.
The mystery gradually decreases as more examples are tried out, but
one never quite loses the feeling that there is something peculiar about
the subject.

There are a few interpretational problems on which work may still
be done. They are very difficult to state until they are completely
worked out. One is to show that the probability interpretation of ¢
is the only consistent interpretation of this quantity. We and our
measuring instruments are part of nature and so are, in principle,
described by an amplitude function satisfying a deterministic equation.
Why can we only predict the probability that a given experiment will
lead to a definite result? From what does the uncertainty arise?
Almost without doubt it arises from the need to amplify the effects
of single atomic events to such a level that they may be readily
observed by large systems. The details of this have been analyzed
only on the assumption that [¢|® is a probability, and the consistency
of this assumption has been shown. It would be an interesting prob-
lem to show that no other consistent interpretation can be made.

Other problems which may be further analyzed are those dealing
with the theory of knowledge. For example, there seems to be a lack
of symmetry in time in our knowledge. Our knowledge of the past is
qualitatively different from that of the future. In what way is only
the probability of a future event accessible to us, whereas the certainty
of a past event can often apparently be asserted? These matters
again have been analyzed to a great extent. Possibly a little more
can be said to clarify the situation, however. Obviously, we are again
involved in the consequences of the large size of ourselves and of our
measuring equipment. The usual separation of observer and observed



1-6

The fundamental concepts of quantum mechanics

23

which is now needed in analyzing measurements in quantum mechanics
should not really be necessary, or at least should be even more thor-
oughly analyzed. What seems to be needed is the statistical mechanics
of amplifying apparatus.

The analyses of such problems are, of course, in the nature of philo-
sophical questions. They are not necessary for the further develop-
ment of physics. We know we have a consistent interpretation of ¢
and, almost without doubt, the only consistent one. The problem of
today seems to be the discovery of the laws governing the behavior
of ¢ for phenomena involving nuclei and mesons. The interpretation
of ¢ is interesting. But the much more intriguing question is: What
new modifications of our thinking will be required to permit us to
analyze phenomena occurring within nuclear dimensions?

THE PURPOSE OF THIS BOOK

So far, we have given the form the quantum-mechanical laws must
take, i.e., that a probability amplitude exists, and we have outlined
one possible scheme for calculating this amplitude. There are other
ways to formulate this. In a more usual approach to quantum
mechanics the amplitude is calculated by solving a kind of wave
equation. For particles of low velocity, it is called the Schrédinger
equation. A more accurate equation valid for electrons of velocity
arbitrarily close to the velocity of light is the Dirac equation. In this
case the probability amplitude is a kind of hypercomplex number.
We shall not discuss the Dirac equation in this book, nor shall we
investigate the effects of spin. Instead, we limit our attention to low-
velocity electrons, extending our horizon somewhat in the direction
of quantum electrodynamies by investigating photons, particles whose
behavior is determined by Maxwell’s equation.

In this book we shall give the laws to compute the probability ampli-
tude for nonrelativistic problems in a manner which is somewhat
unconventional. In some ways, particularly in developing a concep-
tual understanding of quantum mechanics, it may be preferred, but
in others, e.g., in making computations for the simpler problems and
for understanding the literature, it is disadvantageous.

The more conventional view, via the Schrédinger equation, is
already presented in many books, but the views to be presented here
have appeared only in abbreviated form in papers in the journals.!

1R. P. Feynman, The Space-Time Approach to Non-relativistic Quantum
Mechanics, Rev. Mod. Phys., vol. 20, p. 367, 1948.
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A central aim of this book is to collect this work into one volume where
it may be expanded with sufficient clarity and detail to be of use to
the interested student.

In order to keep the subject within bounds, we shall not make a
complete development of quantum mechanics. Instead, whenever a
topic has reached such a point that further elucidation would best be
made by conventional arguments appearing in other books, we refer
to those books. Because of this incompleteness, this book cannot
serve as a complete textbook of quantum mechanics. It can serve as
an introduetion to the ideas of the subject if used in conjunction with
another book that deals with the Schrodinger equation, matrix
mechanies, and applications of quantum mechanics.

On the other hand, we shall use the space saved (by our not devel-
oping all of quantum mechanics in detail) to consider the application
of the mathematical methods used in the formulation of quantum
mechanies to other branches of physics.

It is a problem of the future to discover the exact manner of comput-
ing amplitudes for processes involving the apparently more compli-
cated particles, namely, neutrons, protons, and mesons. Of course, one
can doubt that, when the unknown laws are discovered, we shall find
ourselves computing amplitudes at all. However, the situation today
does not seem analogous to that preceding the discovery of quantum
mechanies.

In the 1920’s there were many indications that the fundamental
theorems and concepts of classical mechanics were wrong, i.e., there
were many paradoxes, General laws could be proved independently
of the detailed forces involved. Some of these laws did not hold.
For example, each spectral line showed a degree of freedom for an
atom, and at temperature T each degree of freedom should have an
energy kT, contributing R to the specific heat. Yet this very high
specific heat expected from the enormous number of spectral lines did
not appear.

Today, any general law that we have been able to deduce from the
principle of superposition of amplitudes, such as the characteristics of
angular momentum, seems to work. But the detailed interactions
still elude us. This suggests that amplitudes will exist in a future
theory, but their method of calculation may be strange to us.




