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4.2

Introduction

Aside from the negative-energy problem, the Dirac equation appears
to provide a suitable description of the electron. It has a sensible
nonrelativistic limit, and it automatically yields the correct magnetic
moment. We now investigate the interaction of the Dirac electron
with prescribed external potentials. In particular, we shall be pri-
marily interested in low-energy properties, avoiding the difficulties
associated with the as yet uninterpreted negative-energy solutions,
which are an essentially relativistic feature. We anticipate from our
discussions of the packet in the preceding chapter that in practice
they play a very minor role in a problem such as the hydrogen atom,
which finds the electron localized in Bohr orbits of radius® 1/am > 1/m.

We shall see, in fact, that the stationary energy levels deduced
from the Dirac equation for the hydrogen atom are in exceedingly
close agreement with the observed eigenvalues. However, before
indicating the solution to the eigenvalue problem in the Coulomb
potential, it is instructive to cast the Dirac theory in a form which
displays the different interaction terms between the electron and an
applied field in a nonrelativistic and easily interpretable form.

We consider, then, a systematic procedure developed by Foldy
and Wouthuysen,? namely, a canonical transformation which decouples
the Dirac equation into two two-component equations: one reduces to
the Pauli description in the nonrelativistic imit; the other describes
the negative-energy states.

Free-particle Transformation

As a first illustration of the Foldy-Wouthuysen transformation we con-
sider the Dirac equation for a free particle, most conveniently—for
this purpose—written in hamiltonian form and with the e matrices in
the representation introduced in Eq. (1.17). 'We search for a unitary
transformation Up which will remove from the equation all operators
such as e« which couple the large to the small components. We call

! Henceforth we set # = ¢ = 1. The Compton wavelength of the electron is
1/m = 3.86 X 107! cm, and the rest energy m = 0.511 MeV. The dimensionless
fine-structure constant is e = e2/4r = 1{q7.

101 107

0.511 MeV = — em™?

= — -1 =
3.86° 1.29 3¢ m

in these units.
*L. L. Foldy and 8. A. Wouthuysen, Phys. Rev., T8, 29 (1950).
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The Foldy-Wouthuysen transformation 47

any such operator “odd”; operators which do not couple large and
small components are “even”; thus e, v, 7vs, ete., are odd, and 1, 8, ¢,
ete., are even.

Writing Ur = ¢+ with § hermitian and not explicitly time-
dependent, the unitary transformation is

¥ = e*ify
.oy

and @W = e-HSH,p = 8+‘:SH8'"’"3|[/’ = H'Y

H'’ is to contain no odd operators by construction.

% Since H = a-p + fm with {e8} = 0, our problem is quite
] analogous to that of attempting to find a unitary transformation
which changes a two-component spin hamiltonian 3 = ¢.B, + ¢.B,
into a form which contains only even operators (that is, 1 and ¢.).
Such a transformation is simply a rotation about the y axis and the
operator is et@/Bnb = gHiewdy with tan 6, = B./B.. This suggests
that a good operator to try in our case would be

e:‘llS = eﬁ“‘Pﬂ(P) = COS Iple + M Sin |p|0

Ip|

where the right-hand side is established by expansion of the exponential
in powers of 8.
With this ehoice H' becomes:

H = (cos lp|6(p) + 5—‘1‘#’ sin ]plﬂ(p)) (a-p -+ fm) (co lpl6

el

& . .
= (a-p + Bm) (cos lp| & — ﬁTplp sin [p[ﬂ)

= (a+p + Bm) exp (—28a - pb)

m

= a - p(cos 2|p|o — o] 50 21pI6) + B(m cos 2(pl6 + p| sin 2|p|0)

In order to eliminate the odd operator, we choose

lp

tan 2|p|6 = _15
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and the transformed hamiltonian is

H' = g /m T 52 (4.1)

as may be verified with the aid of the triangle construction of Fig. 4.1.
The new hamiltonian is just the one rejected in Chap. 1, with the
important change that now the negative energies are also accepted.
The negative energies and four-component wave functions are the
price we must pay in order to have a factorization of H’ in (4.1) into a
linear Dirac equation.

The General Transformation

We turn now to the more general case of an electron in a prescribed
external electromagnetic field and search for the corresponding trans-
formation S. The hamiltonian is

H=uqa:-(p— eA) 4 gm + ed

=pm+ 0+ 8 . (4.2)

with @ = a+ (p — €A) and & = ed; as before, 80 = — 08 and
BE = +&8

The fields appearing in (4.2) and hence the hamiltonian itself
may be time-dependent. In the general case the transformation S is
also time-dependent and it is not possible to construct an S which
removes the odd operators from H’ to all orders, as was achieved in
(4.1). Therefore, we content ourselves with a nonrelativistic expansion
of the transformed hamiltonian in a power series in 1 /m, keeping terms
only through order (kinetic energy/m)® and (kinetic energy)(field
energy)/me.

P +m
p fig. 4-1 Foldy-Wouthuysen triangle construction.
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The Foldy-Wouthuysen transformation 49

Again we introduce the transformation by

¥ o= ey
finding
9 syt = — Pty — s f ;0 9 '
g ¢V = HY = He = e (" at)+(’ate S)""
Thus
(M'= L _ _Q —i8 ro__ Iy,
i [BS(H ‘e )’ ]“b = Hy

Since S is expanded in powers of 1/m and is therefore ‘‘small” in the
nonrelativistic limit, we expand the quantity in brackets in a series
of multiple commutators, using the relation?

2
etSHe S = H 4 4[S,H] + (;l! SIS, HN+ - - -

+ ONisls, - - IS H -+
Since 8 = O(1/m), to the desired order of accuracy we have
H' = H + i[S,H] — 3 [S1S,H] — & [S,[S,[S,H]]

1 ; 1.
+ 57 [SISIS[S,8mll] — 8 — 2 [8,8] + £ [S,18,31]

To start cohstructing S, we consider just the terms through order
unity:

H' = gm + & + 0 + i8,8lm (4.3)
We require that the odd term in (4.3) vanish; and taking our cue from
the behavior in the free-particle case, we choose § = —¢80/2m.

1 This may be verified by considering

F(\) = eASHe DS = z ~ (%g - @
It follows that "
%' = ¢S 4[S, Hle—Ms
and thus
’?Tf = eMSG[B[S, - - - LIS, H] - + Jles

from which the identity follows upon setting A = 1 in (a).
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We then find, to the order of accuracy desired,

AS,H] = =0 + - [0,8] +  po?
sisisa = — 2% _ Lo le] - 1 o
SISISISHN = oo — L ges
HISISIS 8,1 = 2
—§ = 4+ B8
~ 2188 = — g l0,)

Collecting everything together,

H’=ﬁ(m+—-——p4

2m  8Sm?

1 i
)+ 8 = gral0f0g] = g 0,

18

+ 4 (08] - 2+——9—Bm+8’+®’ (4.4)

3m

The odd terms now appear in (4.4) only in order 1/m. To reduce
them further, we apply a second Foldy-Wouthuysen transformation
using the same prescription:

sf=:§§@f=_;§( [0,8] — +zﬁe)

2m 2m
Under this transformation we find

zﬁ o

H' = (H - zg—z) 5 = B+ &+ 0,8 +

= fm + & + 0"

where 0" isnow O(1/m?). Finally, by a third canonical transformation

S = jBGI’

2m

doo6/018
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.8 The Foldy-Wouthuysen transformation 51
this term may also be eliminated in the same way, the end result being
i ]
e — 5i8"” "o 1 — 387 ’
H e (H 2 t) = fAm + &
_ o4 1 i .
= B(mt g = )+ 6 — gz l0f08)] — g0,
Evaluating the operator products to the desired order of accuracy, we
find
0 _(a-(p—eA))* _(p—eA)® € 5.B
2m 2m 2m 2m -
te
—([68] + 1 @) = &k —ta VP — ja- A) = 8—mza-E
1€ \ e
[e,g'—:'nz(!' '.«:I = S—mé[&'p,ﬂ'E]
1e .0FE7 e
szi"‘f“f(—"sa) Tamo EXxe
ij
deE—l— 5 6 curIE+—d Exp
and thus the reduced hamiltonian is to this order
’ (P _ eA)z P4 1
no — _ .
4 H —B( m + 5 ~ gmi + ed e2mﬁd B
ie e e . -
1ce 8mz "’ 4m? 8m? (4.5)
ton The individual terms in (4.5) have a direct physical interpreta-
tion. The terms in the first bracket give the expansion of
V(p — €A)? + m?

- to the desired order, showing the relativistic mass increase. The
second and third terms are the electrostatic and magnetic dipole.
energies. The next pair of terms which taken together are hermitian
comprise the spin-orbit energy, and they have a very familiar form
in a spherically symmetric static potential. In this case curl E = 0,

19V 13V
dEX —_Fa—d IrXp= —"—_31_—6'14
;100 and this term reduces to
19V
Hopinomit = g —~ =g+ L (4.6)

4m? r Ir
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Equation (4.6) is in agreement with the classical result obtained by
considering the magnetic field B’ = —v x E experienced by the mov
ing electron. The interaction energy one would expect is thus

€ e
—%6'3' = 2—mzd'(PXE)
However, this is reduced by a factor of 2 owing to the Thomas pre-
cession effect and indicates that the orbital moment of the electron
has the standard gyromagnetic ratio of g, = 1.

The last term—known as the Darwin term—may be attributed to
the zitterbewegung. Because the electron coordinate fluctuates over

distances &r =~ 1/m, it sees a somewhat smeared out Coulomb poten-
tial; the correction is

@V = (Ve + 0) — (v = {or 2V Ea o 5 o)

1
ar? VZV [y 6_1??,2 V2V (4.7)

i

=l

in qualitative accord with the sign, form, and magnitude of the Darwin
term,

The Hydrogen Atom!

We turn to a discussion of the bound-state solutions of the Dirac
equation, considering in particular the energy levels of the electron
in a Coulomb field. For this problem the Dirac equation is

HYy =[a:p-+ pm+ V(¥ = Ey (4.8)

with V = —Za/r. 1In order to separate variables, we take advantage
of the fact that the angular momentum of a particle in a central field
is conserved. Evidently J =L + S =71 X p + 146 commutes with
the hamiltonian (4.8) and therefore we may construct simultaneous
eigenfunctions of H, J?, and J,. To do this, we call on experience
with the Pauli matrices, observing that in the representation of

! The eigensolutions in the Coulomb potential were first given by C. G.
Darwin, Proc. Roy. Soc. (London), A118, 654 (1928), and W. Gordon, Z. Physik,
48, 11 (1928). For a complete discussion and references of the atomic applications
of the Dirac equation see H. A. Bethe and E. E. Salpeter, “Quantum Mechanics
of One- and Two-electron Atoms,” Academic Press Inc., New York, 1957, and

M. E. Rose, “Relativistic Electron Theory,” John Wiley & Sons, Inc., New York,
1961.

Tha
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?;fg
by v Chap. 3
10V ? =19 0
; “lo s
b is diagonal in terms of 2 X 2 Pauli spin matrices. Therefore, if we
construct ¢ in terms of two-component spinors
pre-
. E?; f— ¢
fron %2 ¥ [X]
d to the angular separation for the solutions of ¢ and x is precisely that
yver of the Pauli two-component theory. The two-component angular
ten- solutions are eigenfunctions of J?2, J,, L2, and S? and are of two types:
i Forj=1+4+ 14 ‘
b Ofm = (4.90)
47) : \/——*—l t 28— s
win Forj=1— 14
Nt B
i _ 20+ 1
% ' Cim = + (4.9b)
. ! + 1/2 + m Ym-[—}é
N "2+ 1 !
Jirac The spherical harmonics here are written with the convention
tron j; Y}, = (—=)"Y:_n» and the solution ¢ exists only for I > 0. The
ig two solutions above satisfy the eigenvalue equations
i '
“8) T = §(G + Do
field & L-dpf? = (J® — L* — 3¢y,
with | = — A+ 9e
eous Eg with
ence @+ =-G+2% Ji=1+%
n of % k= . .
s a | H=+G+2 Jj=1-)
ystk, For a given j they are of opposite parity, since their I values differ
itions by 1, and can be formed from each other by a scalar operator of odd
ianics . . . . . . m .
- and pa.nty. This operator will be a linear combination of ¥7(8,¢) since
York, : it must change the I value by 1, and is therefore proportionsl to r.

Dotting with ¢, the only pseudovector at our disposal, we form the

i .



04/27/2006 14:38 FAX 1 510 643 8497 Physics Dept UC Berkeley

54.

Relativistic quantum mechanics

pseudoscalar ¢ - r/r and find with the above sign convention

[ o

o= g (4.10)

The general solution to the central field problem for a giveh Jjm is

3Gy + WG 0
Yim = . ~
F; Fi

(—)
— Qim T Cim
r

We may finally break this down into two solutions each of definite
parity. Since V(r) is invariant under reflection of coordinates, we
know that the energy eigenfunctions can be classified into parity
eigenstates along with (7,m); and therefore we form the even and

- odd solutions, which have the property under the transformation

7

X = —X
' V(@) = pY(z) = £¥(') - (411
These are given by
Gy,
"
. _
= | pye-r | | (4.12)
T T %im
ror

where as a common notation we have introduced

GIF[G;*_JEH% '_Z{F}“ i=l+%
G j=l-1 Fy  j=1-1%
o lso;:, ,1 =1+ 13

Om J=l—1
and have made use of (4.10). The parity of these solutions is (—)

by the convention (4.11). With the aid of the following identities we
can now find the radial equations following from (4.8):

f

p@¢}m=%(d 1’“'”)@ m
= dr;r(lr%-l-id'la)ﬂr) im

do10/018
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The Foldy-Wouthuysen transformation L 56
The radial equations are then
) _dF
(E -t )Gb( ) = l’(r) + - F;,(‘r)
dG (4.13)
(E + m -+ )Fz,( ) = "(") + 2 Gy(r)

The bound-state solutions of these equations may be found by standard
methods;! we quote only some of the results. '
The energy eigenvalues are

E 1+ Za T @1
n = M - y
[+ o voo=ro) |

where the quantum number n = 1, 2, .,  is a positive integer
and the angular-momentum elgenvalues range from 0 to 7 + 194 < =,
with the restriction 0 < I < n — 1. Expanding (4.14) in powers of
(Za)?, we see that n corresponds to the principal quantum number of
the nonrelativistic theory |

B 1 Z%a? (Za)?{ 1 .
E"Nm{l"'i n? [1+ n (J+/ 4n)]+0((za))](415)

The ground-state energy is, withn = 1,7 = 13,
E, = m 1 — Z%? = m — 2% *m — YKZ%a*m + - - -

The corresponding spin-up and spin-down normalized eigenfunctions
are

Vnel,jmss, 1 (1,6,0)

O .
= (Zmﬂ@% Jl——i_r (QmZa,r)'y‘—le—mZﬂr M VCOS 0
Vir V2T (1 4 2v)  La
z—--——(lz_ V) sin fe'¢
. o -
'lbn—lsi=%- 1 (T, B; 9")
— 0_ -
1
= (2mZ_'i)%\} T (@mZar)r—lemZer i~ sin Oe—i¢
Viar  V2r(l + 2v) Za
—i(l — ¥)
——— = cos f

o Zao .
1 Darwin, Gordon, Bethe and Salpeter, and Rose, op. cit. )

do11/018
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with v = /1 — Z%?. In the nonrelativistic limit v— 1 and
(1 — v)/Za— 0, and they reduce to the Schrédinger wave functions
multiplied by two-component Pauli spinors. In the relativistic
case we see that as r — 0, ¢ exhibits a mild singularity of order
(2mZar)~(#ai? which becomes important only at distances

. 1
2ml e

r e—ZIZ’cx'.2

For Za > 1, v is imaginary and the solutions exhibit an oscillatory
“chavior reminiscent of that found in the Klein paradox. In this
case there is no longer a gap between the positive- and negative-energy
spectra, and again we lack a physical interpretation of the solution.

In classifying the energy levels (4.14) it is customary to denote
them by their nonrelativistic labels, that is, by the orbital angular
momentum [ appearing in ¢}, and by the total j. In the following
table we list a few of the first terms:

" L J .Enj

1814 1 0 ig m ‘\/1 — Za?
. Jl + ‘\/1 — Zlx?
m

1 1 = Z%a?
9Py | 2 1 13 m\/ +\/2 a

%P, | 2 1 % 3;3‘\/4—2%2

The 28,; and 2P, states are degenerate, being the two eigenstates
of opposite parity corresponding to the same n and j. The 2Py
state is higher in energy than the 2Py, state; the energy difference,
[m(Za)*/32](1 + 0(Za)? 4 - - -), is the fine-structure splitting due to
the spin-orbit interaction, (4.6). In general, the state of larger j,
for a given =, lies higher in energy according to (4.15).

How do these predictions agree with observations for the IT atom?
Prior to 1947 the agreement was completely satisfactory after the
above predictions were modified to take into account the hyperfine
splitting of each level due to coupling between the electron and proton

do12/018
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d E
s ” 3™
: ; ¥
Ic L as"”? —_———— 21;1/2 1__—"—'3Dm
’xr - Nearly equal (split by Lamb shift)
.
3} 172 2P _ 1 .
28 e — Fine structure (spin-orbit coupling)
2p'* %_'
. Lamb shift
Y i
is
5y
n.
ar :
1g
w___ (triplet) j—
18" = Hyperfine splitting
% L (singlet)
i
5
! -
Fig. 4-2 Low-lying energy levels of atomic hydrogen. The diagram is
E not drawn to scale.
spins. In 1947 the Lamb-Retherford measurements! of the H-atom
fine structure confirmed an earlier suspicion of a shift of the 25, levels
i upward relative to the 2Py lines. This “Lamb shift,”” breaking the
degeneracy of levels with the same n and j but differing /, arises
i from the interaction of the electrons with the fluctuations of the
; s quantized radiation field, Both the hyperfine structure splitting
i and the Lamb shift have been measured and calculated to a very high
precision with good agreement.?
-8 L The hyperfine structure results from the interaction of the proton
e e with the electron magnetic moment.? This has the effect of splitting
se, il all lines into doublets corresponding to the two possible states of
to total angular momentum compounded from the j of the electron
T ig% 1W. E. Lamb, Jr., and R. C. Retherford, Phys. Rev., 72, 241 (1957). For
i references to subsequent work see Bethe and Salpeter, op. cif.; see also W. E.
n? 25% Lamb, Jr., Repts. Progr. Phys., 14, 19 (1951),
he 5 2 For a review of the current situation, see R. P. Feynman, Proc. 1961 Solvay
, i% Conf., Interscience, New York, 1962.
ne i 3 E. Fermi, Z. Physik, 60, 320 (1930); see also Bethe and Salpeter, op. cii.,
e} ;

p. 163.
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system and the half-integer spin of the proton. Let us compute the
magnitude of this effect for s states. For our purpose a nonrelativistic
description of the electron suffices. The interaction is of the form
’ == M .
H + 5, 8 B

1
Axr — 1’|’

ST _ s 2, ’
and B 301, a¥ p(r'Y VX (I X V)
Here I is the proton spin operétor (I. = +14) and p(r’) is the mag-
netic moment density of the proton, owing to the fact it is not a
point particle. Using the relations v x (I X v) = Iv: — (I- V)V
and taking the angular average for spherically symmetric wave fune-
tions so that :
V,'VJ' = %5,‘,‘V2

we find |

_2 e Bl [ dNT 2 1 _ 2 e

B—3gP2Mp[dT p(?")IV 4:7!‘[1'“‘1"[ “_3gP2MpIp(T)

The energy shift is then given, in nonrelativistic theory, by

AE,,"'="('¢,,H'¢11)'=§ 4%; 5+ 1 [ dr y2()o(In(r)

2
g 6+ Ta (O

1

4]

1[4 Z%tfm

g M [’3‘9@?(@)“'1]

6.1 = { +14 triplet states
—34 singlet state

fl

with

The splitting &, of the nth s-state level is thus

5 = L, |8 Zla?(m
n T Mt 30 i\ M,

and is reduced by the mass ratio m/M, relative to the fine structure.
Welton! has given a simple qualitative description of the Lamb

shift by considering the interaction of an electron, treated nonrela-

tivistically, with the vacuum fluctuations of the electromagnetic field,

Since the dynamics of a normal mode of the electromagnetic field is

equivalent to that of a harmonic oscillator, each mode upon quantiza-

tion acquires a zero-point energy of w/2. As a result of this quantum
VT, A. Welton, Phys. Rev., T4, 1157 (1948).
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effect there are now fluctuating electromagnetic fields even when no
external fields are applied. Although the average field strengths
are zero, their mean-square values are nonvanishing, and this leads to a
mean-square fluctuation in the electron’s position coordinate due to its
coupling with the field. It is the amplitude of this jiggling of a bound
electron in the hydrogen atom that we estimate. It implies, as we
saw in our discussion of the origin of the Darwin term, (4.7), an

‘additional interaction energy 14((ér)2)V?V from the smearing out of

the Coulomb potential V(r) seen by the electron. To lowest order,
the change in the energy level for the electron due to this is then

AB.(Lamb) = 36((0r)) [¥2VEV (1) dr
= T Za{ () ¥a 0)] (4.16)

To estimate ((ér)%), we treat the electron classically and non-
relativistically as a charged particle. Its equation of motion for

oscillation about its equilibrium coordinate in the atom is §f = % E,

where E is the fluctuating electromagnetic field. For the wth Fourier
amplitude we have

ek,

éry, = —
¢ Mew?

*and hence for its mean-square amplitude.

((oryy = D

miwt
and (nn = 25 [ Lz .17)

To calculate the mean-square field strength, we consider the total
vacuum field energy

s [ @ @+ B = i Yo
5 2. 22

1 %

where the two values of A refer to the two states of fransverse polariza-
tion and the sum extends over all modes in a large box of volume

L= [ aw 2—9(31::73[(1%
k

Since [ d’z E? = [ d3z B? and w = [k| for free electromagnetic waves,
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the mean-square field strength in vacuo is

PR Y TR Oy s

Inserting in (4.17), we find

) -

e? dw

(1) = 55, (4.18)

w

where the frequency integral extends from 0 to «. Because of the
crudity of our approximate treatment of the electron, the integral
diverges at both ends. 'This is not the case for an accurate relativistic
treatment of the electron localized in a hydrogen atom. Wavelengths
larger than the Bohr radius ~(Zam)~! will not be effective, since there
must be a minimum frequency for the induced oscillations correspond-
ing to this typical atomie size; therefore, wWmin ~ MZa. Thereisalsoa
high-frequency cutoff at distances ~ the electron Compton wave-
length 1/m coming from the relativistic structure of the electron.
This structure corresponding to the zitterbewegung amplitude suggests
that frequencies higher than wmax ~ m will not be effective in jiggling
the electron. Hence we approximate [ dw/w ~In (1/Za) and find
for the mean-square amplitude of the oscillations in the vacuum field,

by (4.18),
2a 1 1\2
waey o 2Y = —
{(&r)%) (1r In 7a (m) (4.19)
The resulting energy shift is by (4.16)
_ 4Za® (1

AE,

3 \m

8 Zta® 1
== [:.—))_;I' % (lﬂ -Z_O-C)] (%azm)ﬁm

=~ 1,000 me/sec forn =2, Z=11=0

2 1 5

This accounts for most of the measured shift of the 25, level in the
hydrogen atom; for the p and higher I states the shifts are not pre-
cisely zero but are much smaller because the wave functions at the
origin are zero. By way of comparison with the ordinary fine struc-
ture we see by looking back at the hamiltonian (4.5) that the ratio of
the Lamb term to the Darwin term is (8a/3x)[In (1/Za)] corresponding
to the ratio of the mean-square fluctuation amplitude (4.19) to the
zitterbewegung structure >=(1/m)>

d0o16/018
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Problems

1. Derive (4.10).

2. The Dirac equation deseribing the interaction of a proton or neutron with an
applied electromagnetic field will have an additional magnetic moment interaction
representing their observed anomalous magnetic moments:

. K¢€
(ZV —ed + E"j'["‘ ﬂ'va‘u' s M,) ¢ =0
where
For = -2 gn -2 4

oy aﬂ:p.

represents the field strengths as defined in Appendix 1.

a. For the proton, i = p, e, = le|; for the neutron ¢ = n, e, = 0. Verify that the
choice of x, = 1.79 and x, = —1.91 corresponds to the observed magnetic moments
and check that the additional interaction does not disturb the Lorentz covariance
of the equation. Check also that the Dirac hamiltonian is hermitian and that
probability is conserved in the presence of the additional interaction.

b. Make s Foldy-Wouthuysen transformation for the neutron, keeping terms to
the accuracy of (4.5), and give a physical interpretation of the individual terms.
Calculate the cross section for the scattering of a slow neutron by an applied

electrostatic field. How might this be measured? [See L. L. Foldy, Rev. Mod.
Phys., 80, 471 (1958).]

3. Solve for the exact energy eigenvalues and eigenfunctions of a Dirac electron in
a uniform static magnetic field. [See L. D. Hufi, Phys. Rev., 38, 501 (1931);
M. H. Johnson and B. A. Lippman, Phys. Rev., T7, 702 (1950).}

4, Caleulate to lowest order in 2 the first-order Zeeman effect for an electron in a
hydrogen atom. If the electron gyromagnetic ratio differs from ¢ = 2, how are the
Zeeman levels altered (to first order in the difference ¢ — 2)?

5. Discuss the precession of the spin of a charged Dirac particle with an anomalous
magnetic moment « in an applied static magnetic field. Show in particular that
the difference in the spin and orbital precession frequencies is proportional to
g — 2, or x. How does it depend upon the mass of the particle? See:

H. A. Tolhoek and 8. R. de Groot, Physica, 17, 17 (1951).

K. M. Case, Phys. Rev., 106, 173L (1957).

H. Mendlowitz and K. M. Case, Phys. Rev., 97T, 33 (1955).

M. Carrassi, Nuovo Cimento, T, 524 (1958).

V. Bargmann, L. Michel, and V. L. Telegdi, Phys. Rev. Lelters, 2, 435 (1959).
Louisell, Pidd, and Crane, Phys. Rev., 94, 7 (1954).

Schupp, Pidd, and Crane, Phys. Kev., 121, 1 (1961).

Charpak, Farley, Garwin, Muller, Sens, Telegdi, and Zichichi, Phys. Rev. Letters, 6,
128 (1961.)
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6. Construct an additional interaction term to represent a possible anomalous elec-
tric dipole moment of a Dirac particle. What happens to the parity transforma-
tion? What is the effect of such a term on the hydrogen-atom energy levels?
[See G. Feinberg, Phys. Rev., 112, 1637 (1958); E. E. Salpeter, Phys. Rev., 112,
1642 (1950).]

7. Owing to meson effects (discussed in Chap. 10), the proton charge is distributed
over a small region of spatial extent ~1071% ¢m. Compute the effect on the
hydrogen-atom energy levels of such a charge distribution with mean square
radius r = 0.8 X 1072 em. Compare the result with the Lamb shift.
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