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3.1 Plane-wave Solutions

We have seen that the Dirac theory meets the requirements of Lorentz
covariance and that the positive-energy solutions to the Dirac equa-
tion have a sensible nonrelativistic correspondence.

Further insight into the nature and interpretation of solutions of
the Dirac equation may be gained by considering the free-particle
equation. The four solutions corresponding to a free particle at
rest were given in (1.24) and are written in the combined form

y(x) = wr(0)e tieme' ity r=1,2 3,4 (3.1)
+1 r=1,2
with €& =
—1 r=3,4
The spinors are
1 0 0 0
0 1 0 0
1 —_ 2 — 3 — 4 —
w(0) 0 w?(0) 0 w*(0) 1 w*(0) 0
0 0 0 1

(3.2)

in this representation, Eq. (1.17), of the Dirac matrices. The first
two solutions describe the two spin degrees of freedom of a Schrédinger-
Pauli electron. The ‘“negative-energy’”’ solutions, r = 3 and 4,
remain to be interpreted. They are all eigenfunctions of ¢, = 12 with
eigenvalues +1 and —1. The Lorentz transformation (2.10) may
be used to build the free-particle solutions for an arbitrary velocity.
"By transforming to a coordinate system moving with velocity —v
relative to that of the solutions at rest, we construct free-particle
wave functions for an electron with the observed velocity +v.

In order to exhibit the general space-time coordinate variation,
we need only express the exponent in (3.1) in invariant form:

(0) !
exp( Ze,-m ' = exp (__%r'p”ﬁx”) = exp(—z’ef P,;f“) (3.3)

where z# = a#,z® and p* = a*,p*® = ag¥ymc; our notation throughout
is such that p® = E/c = + +/p? + m%* > 0. The positive- and nega-
tive-energy solutions transform among themselves separately and do
not mix with each other under proper Lorentz transformations, as well
as under spatial inversions. This is seen to follow from (3.3), since
the four-momentum of a free particle is time-like, p*p, = m2? > 0.
Therefore. p, is within the light cones in p space. Under the trans-
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Solutions to the Dirac equation for a free particle 29

formations mentioned above, the future and past light cones, and hence
the positive- and negative-energy solutions, remain distinct.
We transform the spinors with

S = e (i/2uay (3'4)

according to (2.23), where for simplicity we have specified the velocity
to lie along the z axis. The Lorentz angle » in (3.4) is given by
w = tanh™! (—v/¢) = — tanh™! (v/c) and differs by a minus sign from
(2.21), since we are transforming to a system moving in the z direc-
tion with velocity —v.

Applying the transformation (3.4) to the spinors (3.2), we find

wr(p) = e/ Donyr(() = (coshcz—'J — a; sinh %) w(0)

o
1 — —
0 0 tanh 2
" 0 1 — tanh g 0
‘ = c¢osh 2 3 w(0)
0 — tanh — 1 0
2
w
-t — 0 1
i anh 2 0 1

(3.5)

" From the form (3.2) for wr(0), it is clear that the rth column of this
transformation matrix is identically the column spinor corresponding
to w(p). We may reexpress it in terms of the energy and momentum

of the particle by using the trigonometric identities,

w — tanh w v/c PC
— tanh - = _— = ——— = 2
2 1+4++1T—tanh’e 14+ /1- @5 E+me

2
and cosh‘g = 4 }Ezi-m—c"—:—c— (3.6)

Also, we may generalize (3.5) to the case of arbitrary direction of
the velocity v. In this case the matrix I in (2.19) is replaced by

i 0 — COSa — COSf — Ccosvy
Ju, — | —cosa 0 0 0
’ — cos 3 0 0 0
— cos y 0 0 0

where cos a, cos 8, and cos v are the direction cosines of the velocity



04/25/2006 07:20 FAX 1 510 643 8497 Physics Dept UC Berkeley doo4/017

30 Relativistic quantum mechanics ;
3
¢
i

v, and in the transformation matrix

aur It = 2(co1 08 & + a0z COS B + a3 COS y) = —21’% f
This gives, with the aid of (3.6),
wesV
S_exp('_ﬁ'l'v'l) d
E 4+ me2 E 4 mct ;
) 0 1 DiC —P:C E
_ (E + mc? E + me? E -+ mc? (3.7)
- 2mc? P:C b 1 0 '
E+ mer E -+ me?
P+C —PL 1

| B+ me?2 E + me?

where p, = p. *+ 7p,. The general form of a free-particle solution is _
V(@) = wi(p)eiemmtn R GE)

where the rth column of (3.7) gives the coi‘responding spinor w (p)
in the representation of the v matrices given by Eq. (1.17).
The wr(p) satisfy the following useful relations:

@ — emow(@) =0  w(p)(P — &mec) =0 (3.9a)

W(P)w’ (p) = b, (3.90)
4
Z &Wa(P)Wa(P) = Bap (3.9¢)

i R A S Wt s e

Equation (3.9a), obtained by applying the Dirac operator
(z¥ — m) to (3.8), states the Dirac equation for a free particle in

momentum space. Forr = 1lor 2,¢ = 41 and (p — me)w'(p) = 0.
This is the equation for the two positive-energy solutions given by the :
first two columns of (3.7). In this representation their third and
fourth components are the ‘“small components” in a nonrelativistic $

approximation, and they reduce to Eqgs. (1.29) and (1.31) in the T
absence of external fields. For the negative-energy solutions the 1
“large’” and “small” components are interchanged in (3.7). We also
introduce the adjoint spinor according to the definition in (2.28):
W (p) = wi(p)y,. It satisfies the adjoint wave equation

(D) (p — eme) = 0 (3.10)
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Solutions to the Dirac equation for a free particle 31

which is obtained by taking the hermitian conjugate of (3.9a) and
multiplying from the right by ~° with the aid of the identities
(79)?% = 41 and yO%y*Ty® = 4, |

Equation (3.9b) is a covariant normalization statement. The
bilinear form W (p)w™(p) is a Lorentz scalar as discussed in the pre-
ceding chapter [see Eq. (2.38)], and so we verify (3.9b) simply by
returning to the rest solutions (3.2). The probability density
wt(p)w'(p) will not be an invariant but transforms as the fourth
component of a vector according to (2.27). Calculating from the
columns of (3.7) we find

, E
w(ep)w(esp) = 5 b | (3.11)
This shows that the probability density acquires the correct factor
E/me? to compensate the Lorentz contraction of the volume element
along the direction of motion and to preserve thereby the normaliza-
tion of the invariant probability. Notice that (3.9b) isan orthogonality
statement between a spinor and its adjoint of the same momentum
p, whereas in (3.11) the positive-energy spinor is orthogonal to its
hermitian eonjugate spinor of negative energy and reversed momentum.
Thus two plane-wave solutions of the same spatial momentum p but
of opposite energy are orthogonal in the sense that ¢f(a)y"(z) = 0
if r =1, 2 and » = 3, 4, or vice versa.

Equation (3.9¢) is a completeness statement applying to the four
Dirac spinors for a given momentum. It is clearly true for a free
particle at rest. To prove it for an arbitrary moomentum, we can
make an appropriate Lorentz transformation to the rest system and
then use (3.2) to find

4 4

Y cwn@mm) = Y el (— %) w2 (0) 5 (0) 853 (u_ %)

r=1 r=1
= wa‘.,;\S;; = 5,,5 )

That @ and not w' appears in the completeness relation is due to the
relation 8 = y9S-1y¢ derived in (2.26) and again reflects the fact that
the Lorentz transformation is not unitary.

By using the rotation operators

S = gli/Dpds
upon the sdlmbions (3.2) for the electron af rest and polarized in the

z direction, it is possible to form states which are polarized in any
arbitrary direction s. In particular, the defining relation for such
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states is
é-8w = w

if the spinor w corresponds to a particle polarized along direction of
the unit vector s. The specific form of these solutions is similar to
that of the two-component Pauli theory owing to the structure of ¢
in (2.24).

In this deseription it is convenient to introduce a different nota-
tion., Let u(p,s) denote the spinor which is a positive-energy solution
of the Dirac equation with momentum p* and spin s*. Thus u(p,s)
satisfies the equation

(B — mc)apus(p,s) = 0 (3.12)

The spin vector s* is defined in terms of the polarization vector § in
the rest frame by s* = a+.,§*, where §* = (0,8) and the a#, are the trans-
formation coefficients to the rest frame, that is, p* = a*,p’, where

P’ = (m,0). Notice that s,s» = —1 and that $#§, = 0 and therefore
p*s, = 0. In the rest frame u satisfies :
¢« Su(p,8) = u(p,% (3.13)
Similarly let v(p,s) denote a negative-energy solution
(® + me)v(p,s) = 0 (3.14)
with polarization —8§ in the rest frame, that is,
6 3(p,8) = —v(p,%) (3.15)

The u(p,s) and v(p,s) are related to the w(p) by
w'(p) = u(p.u.)
wi(p) = u(p,—u.)
w'(p) = v{p,—u.)
wi(p) = »(p,u.)
with «% a four-vector, which in the rest frame takes the form
4w = (0,1,) = (0,0,0,1)

An arbitrary spinor is thus specified by the momentum p,, the
sign of the energy, and the polarization in the rest frame §,.

(3.16)

Projection Operators for Energy and Spin

In practical calculations, it is often convenient to have operators
which project out a spinor of given sign of energy and polarization.

doos/017
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Solutions to the Dirac equation for a free particle 33

These projection operators are the four-dimensional analogues of the
nonrelativistic two-component operators

_'1 + o,

Py 5

which project out of an arbitrary state the spin-up or spin-down
amplitude.

For the Dirac equation, we search for four operators which project
from a given plane-wave solution of momentum p the four independent
solutions corresponding to positive and negative energy and to spin up
and spin down along a given direction. We would like these operators
in a covariant form so that we may transform with ease among
different Lorentz systems, as will prove useful in practical calculations.

The four projection operators are denoted by P,(p) = P(pu,u.,e€)
and are defined to satisfy the following properties:

P,(p)w”(p) = 8w (p)
or equivalently (3.17)

P,(p)P.(p) = 8,-P.(p)

An operator which projects out positive- or negative-energy
eigenstates for a given p may be found directly from (3.9a), already in
covariant form. We denote it by

A(p) = 6”2—;:6"”
or, alternatively,
Ay(p) = i’;—;;m—c (3.18)
By direct caleulation, using pp = p® = m?2c?, we verify that
M) = e et o) (14 ew) 4 )

that is,
Ai(p) = Av(p)

Ai(p)A_(p) =0
Also notice that

Ay(p) +A(p) =1

To exhibit the analogous operator for the spin, we go to the
rest frame, where the spin is most easily described, and try to find a
projection operator which may be cast into covariant form. The
natural candidate for a spin-up particle is (1 + ¢.)/2. In the same
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way as the two-component nonrelativistic spin projection operator is
liberated from explicit dependence upon the z direction by rewriting
(1 + ¢.)/2 as a scalar,

1+é-1,
2

we try to write the Dirac spin projection operator in sealar form by
using the four-vector %, that is
140, 14 vyevslidye _ 1+ vs¥ro

2 2 2

This may now be cast into covariant form by eliminating the «,.
Because we are in the rest frame, v, acting upon the Dirac spinor
becomes +1. With the conventions established in (3.14) and (3.15),
the covariant Dirac spin projection operator is finally

1 + Y5lz

Z(u,) = 5

or for a general spin vector s, with s*p, = 0,

2(s) = 1 +2'”* (3.19)
Thus in the rest frame
2(@)wi(0) = 2 Y% i(0) = LE T ui(0) = wi(0)  (3.20)
and Z(—)w?(0) = wi(0)
Similarly, for the negative-energy spinors
B(— @) = T % ur(0) = LT ()
= 1E % wa) = wi(0) - (@3.21)
and Z(i,)w*(0) = w*(0)

In terms of the definitions (3.16) of the spinors u and v, these are
2(uz)u(p:uz) = u(p,u,)
Z(u)v(p,u.) = v(p,u.)
z(‘—uz)u(p:uz) = 2(‘“:)”(?;"“"2) =0

Because of the covariant form of the projection operator Z, we may

doos /017
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" Solutions to the Dirac equation for a free particle 35

write for any polarization vector s#(s“p, = 0) that

Z()u(p,s) = u(p,s)
Z(s)v(p,s) = v(p,s) | (3.22)
Z(—s)u(p,s) = Z(—s)(p,s) =0

With the four projection operators A, (p) and Z(+s) we can now
completely specify free-particle motion in terms of four-momentum p,,
sign of energy ¢ and polarization s* with s*p, = 0. In particular,
we construct from (3.18) and (3.19) the four projection operators

Pi(p) = Av(P)Z(w)
Py(p)} = A (p)Z(—u.)
Psi(p) = A_(p)Z(—u.)
Py(p) = A(p)Z(u)

Notice that [Z(s), AL(p)] = 0 for all vectors satisfying s*p, = 0,
since p anticommutes with both v; and ¢. From this it follows that
these P,(p) satisfy the defining relations (3.17).

We shall rely upon these projection operators very frequently
in developing rapid and efficient calculational techniques. They per-
mit us to use closure methods, thus avoiding the necessity of writing
out matrices and spinor solutions component by component.

In order to achieve an invariant formulation, we have introduced
negative-energy solutions of momentum p which, according to (3.8),
are eigenfunctions of the momentum operator p with eigenvalue —p.
Similarly, according to (3.19) and (3.21), the negative-energy sclutions
representing spin-up and spin-down states reduce in their rest frames
to eigenfunctions of o, with eigenvalues —1 and -1, respectively.
The physical motivation for this apparently backward association of

- eigenvalues for the negative-energy solutions will appear when we

3.3

‘come to the hole theory in Chap. 5.

Physical Interpretation of Free-partwle
Solutions and Packets

We may now superpose the plane-wave solutions at our disposal
to construct localized packets. These packets are still solutions of the
free Dirac equation, as required by the superposition principle, since
the Dirac equation is linear. We study them to gain further insight
into the interpretation of the free-particle solutions.



04/25/2006 07:23 FAX 1 510 643 8497 Physics Dept UC Berkeley dolo/017
4

36 Relativistic quantum mechanics

To begin, we form a packet by superposing positive-energy
solutions only:

. 3 2
1) = [ ok ) bpuse e (3.23)
+a

To normalize the expansion coefficients b(p,s) to unit probability, we
call on the spinor orthogonality relations (3.11) and find!

[vor@ovomy oz = [ ep™E T v @M@ Gum

+s,+¢

= [dp Y o)l =1 (3.24)
+s

—_—

The average current for such a packet is given by the expectation
value of the velocity operator

Jo = h(,(+)'rcm,,(+) d3z (3.25) ;

In evaluating this we use the following important relation between b
the three four-vectors that can be formed from free-particle solutions: :
For ¢i(z) and ¥.(x) any two solutions to the Dirac equation,

(p — mel¥(z) =0,

Hevin = 5 s — (0] — o puar™n)  (3.26)
To prove (3.26), we observe that if a* and b* are two arbitrary four-
vectors
gh = ab.lle(v*yr + v*yr) + 2alvryr — vry9)]
= a*b, — ta*b’s,, (3.27)
1'We collect here familiar properties of the Dirac § funection used in deriving
(3.24):

f_"' dz ei¢—2 = 2ré(s — a)

[ a5 36 - a5 = 1)

[%Eﬁ;gig 8§ = ﬂ]

if f(s) has no singularities in the interval of integration;
5 (g) = lela(s) le| = O :

The & funetion is mathematieally respectable in the sense of distribution theory;
see, for instance, M. J. Lighthill, *Introduction to Fourier Analysis and General-
ized Funections,” Cambridge University Press, London, 1958.
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ry Then with the Dirac equation we construct
: 0 = ¥o(—p — mcdd: + dod(p — me)n
3) : = —2medods + Yolarp, — tarpio,, — pa, 1 tprae,, )i
§ — - "
ve ‘ ('}p pl-"; I )
3 and (3.26) emerges as the coeflicient of an arbitrary vector a*.
i This identity is known as the Gordon decomposition.! It ex-
) presses the Dirac current as the sum of a convection current similar
: to the nonrelativistic one, and a spin current. _
4) : With the help of (3.26) for the special case Y2 = ¢, = ¥ and (3.23),
‘ we now find for the current (3.25)
i di*p d®p’ mc? (o
m _ JH = | dz 3 ; Z b*(p',s' Yb(p,s)ei®—Pz,lh
f (2nh)* \/EE .4,
| .

5) X o= a(@,$)(P: + ) + dor(p), — p)lulp,s)

en o2

i5: = [ @22 Y bl (3.28)

n, ; +s
According to the normalization (3.24), the current can be written

i 2 |
6) I = oy = {52) = (s (3.29)
Ir- where (), denotes expectation value with respect to a positive-energy
‘ packet. Thus the average current for an arbitrary packet formed of
positive-energy solutions is just the eclassical group velocity. The

7 i corresponding statement is familiar in the nonrelativistic Schrodinger

_ theory.

g Now we come to an important difference in the relativistic theory.
In the Schrédinger theory the velocity operator appearing in the
current is just p/m and is a constant of the motion for free particles.
The current is not, however, proportional to the momentum in the
Dirac theory, and whereas the Ehrenfest relation (1.27) has shown that
E‘, p = 0 for free-particle motion, the velocity operator ce is not
constant, since [e,H] £ 0. Indeed in constructing eigenfunctions of
ce we have to include both positive- and negative-energy solutions,

since the eigenvalues of ca’ are +c¢ whereas |[{ca’),| < ¢, according

_':;; - to (3.29). .

1'W. Gordon, Z. Physik, 50, 630 (1928).
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Let us now enlarge our considerations to include the negative-
as well as positive-energy solutions in forming a packet from the
complete set of free-particle solutions. We generalize (3.23) to

vot) = [ oo Je 3. Bl autp e ot
+ d*(po(p.s)erir]  (3.30)

again normalized to unit probability. A short calculation gives for
the probability

[ @z toeen = [ dp ), bes)l + @l =1

+s

and for the current for such a packet!

Jo= [ ap {Z [[b(p,)
t+s=

+iCY B (=8 )dH P eer it~ p,s)o (D)
ta s

'+ Ao B2

—icY b(—p)dp e ewa(p, )l ~pys) | (33D)
+s, +4
In addition to the time-independent group velocity there now appear
cross terms between the positive- and negative-energy solutions which
oscillate rapidly in time with frequencies

2p0c _ 2mc?
% > #

= 2 ¥ 102! sec™!

This rapid oscillation, or zitterbewegung,? is proportional to the ampli-
tude of the negative-energy solutions in the packet. We have as
yet no physical interpretation of these solutions, but we may ask
when to expect them to be present in tie-packet with appreciable
amplitude. The general form of a free-particle solution (3.30) shows
explicitly by the time independence of b(p,s) that a packet initially
formed with positive-energy solutions only does not develop negative-
energy components in the absence of forces. However, a packet
formed to represent an electron somehow localized initially in a region

1 Despite a certain inconsistency, we dencte hereafter

u(\/p* + m%,—p,s) = u(—p,s)

with similar conventions for expansion coefficients b, d%, ete.
t E. Schrodinger, Sitzber. Preuss. Akad. Wiss. Physik-Math., 24, 418 (1930).

doi12/017
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Ve~

b of finite extent generally includes solutions of both signs of energy.
she :

Consider, for example, the solution
¥(r,0,s) = (wd”)‘% “”’é”f‘f’w1(0) - (8. 32)

1 which corresponds to a Gaussmn density distribution of half-width Nd
30) ! about the origin at time £ = 0. At a later time { it can be expressed

as a packet (3.30) with the coefficients b and d* fixed by the initial

for conditions, viz.,at t = 0. S .

\/"“2 Z B(p,8)u(p,s)e i+ d*(p,s)u(p,s)e=# ]

; (21T'ﬁ)% ] 3 H H

= (xd?)—Hetrdy1(0)

: Taking the Fourier transform and using

[ © d3r e—r'lzd’eil'rfh — (21rd2)%e-—}éz=d’m’
we find

31) me? SN e

| VS b ) + (= p () = () e (o)

=4y

ear )
ich The orthogonality relation (3.11) gives

| b9 = A2 (L) ewermutip, i
: | ’ (3.33)
| . * met (a2 \* a2/ 2he 1
pli- % d (_p:s) = E 11-—”’:& e P vT(—p,s)w (O)
ask i Thus the amplitude d* of the negative-energy solutions in the packet
wble lg (3.32) is nonzero. Relative to the positive-energy components 6 it is
WS- ?; reduced by the ratio of the upper, or small, components of v to the
ally upper, or large, components of u, that is, by ~pc/(E + mc?). This
ive- shows that the negative-energy amplitudes are appreciable for
ket f ‘momenta ~mc. We also see in (3.33), however, that the packet is
rion 5 composed predominantly of momenta p X #/d. Therefore, this

packet must be localized in a region of space comparable with the elec-

i tron Compton wavelength, that is, with d ~ #i/mc, before the negative-

é: energy solutions enter appreciably.!

% ! For a discussion of the position coordinate of a positive-energy Dirac electron
'30). ; see T. D. Newton and E. P. Wigner, Rev. Mod. Phys., 21, 400 (1949).
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Fig. 3-1 Potential barrier confining electron of energy
E in region I to the left.

This result ean be equally well inferred on dimensional groups
using Ap Az ~ # without reference to the particular gaussian shape.
In discussing problems and interactions in which . the electron is
“spread out’’ over distances large compared with its Compton wave-
length, we may simply ignore the existence of the uninterpreted
negative-energy solutions and hope to obtain physically sensible and
aceurate results, This will not work, however, in situations which find
electrons localized to distances comparable with #i/mc. The negative-
frequency amplitudes will then be appreciable, the zitterbewegung
terms in the current important, and indeed we shall find ourselves
beset by. paradoxes and dilemmas which defy interpretation within
the framework so far developed by the Dirac theory of an electron.
A celebrated example of these difficulties is the Klein paradox,!
illustrated by the following example,

In order to localize electrons, we must introduce strong external
forces confining them to the desired region. Suppose, for example, we
want to confine a free electron of energy F to region [ to the left of
the origin z = 0 in the one-dimensional potential diagram of Fig. 3.1.
If the electron is not to be found more than a distance d to the right
of z = 0, in region II, then V must rise sharply within an interval
z < d to a height Vo > E so that the solution in IT falls off with a
characteristic width <d. This is as in the Schrédinger theory, until
the econfining length d shrinks to ~#/mc and ¥V, — E increases beyond
me2. To see what happens, let us consider an electrostatic potential
with a sharp boundary as in Fig. 3.2 and calculate the reflected and
transmitted current for an electron of wave number & incident from
the left with spin up along the z direction. The positive-energy
solutions for the incident and reflected waves in region I may be

10. Klein, Z. Physik, 53, 157 (1929).

do14/017
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(3.34) .

For the transmitted wave we need the solutions of the Dirac equa-
tion in the presence of a constant external potential e® = V.
differ from the free-particle solutions only by the substitution
Po = (1/e)(E — V), so that in region II

#hoc? = (B — Vo) — m2%* = (B — me® — Vo)(E + me? — V)

These

We therefore write the transmitted wave of positive energy E > 0 as

Virans = dei*=

1
0
Chkg

E — Vo4 me?

0 .

+ d’eik,z

— —

0
1
0
— Chkz

LE — Vo + me?

(3.35)

The amplitudes d and d’' are fixed by continuity of the solution at

ANWANA

V V.

I

[ V(z)

I

>z

Fig. 3-2 Electrostatic potential idealized with a sharp bound-

ary, with an incident free electron wave of energy E moving to -
the right in region I.
rent from the potential exceeds the incident one; this is an

example of the Klein paradox.

For Vo > F + me? the reflected cur-
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the potential boundary as required by current conservation:
a+b=4d

_b_k_z E + mce?
a TILE — Vo ¥ me?

¥ =d =0 (there is no spin flip)

d =rd (3.36)

If Vo> 0 and |E — V| < me?, the wave number is imaginary,
ke = +1lks], and the solution in region II is a decaying exponential
corresponding to damping in a distance d > #/mec. - However, as we
increase the height of the barrier beyond Vo = E -+ mc? in order to
further confine the electron, the transmitted wave becomes oscillatory.
The transmitted and reflected currents may be computed, and we find

jtrans _ 4r jref . (1 - T)2 . jtra.ns

e A G AR T e G80)
Whereas the form of these results reminds us of the analogous pre-
dictions of the Schrédinger theory, we must now observe that, by
(3.36) and the above condition Vo > E 4 me?, r < 0. So we find in
(3.37) a result contradicting our ordinary reasoning by indicating a
negative transmitted current and a reflected current exceeding the
incident one. What is the source of a current in region IT moving left
in Fig. 3.2 into region I in this case of Vo > E + me?? We increased
the potential height V, beyond E + mec? in attempting to localize the
solution within one Compton wavelength #/me, but ended up with
undamped oscillatory solutions instead. How do we understand
this? Only by understanding and interpreting the negative-energy
solutions. It is clear from the packet discussion that they enter
prominently in solutions localized within %/me. It is equally clear
from the above calculation of the currents that our physieal picture
of what is going on also fails at these distances.

We shall tackle and resolve these questions starting in Chap. 5.
Before doing this let us look in the vast, if limited, domain of physical
problems where the applied forces are weak and smoothly varying on
a scale whose energy unit is mec? and whose distance unit is #%/me.
Here we may expect to find fertile fields for application of the Dirae
equation and theory for positive-energy electrons.

Problems

1. Derive (3.11) in a representation-free way directly from the Dirac
equation.
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2. Prove that (3.9¢) is independent of the specific representation of the Dirac
gpinors.

3. Derive (3.31) for the current in a general packet (3.30).
4. Verify (3.36) as the conditions for current conservation.

6. Find the energy levels of a Dirac particle in a one-dimensgional box of depth
Vo and width a.

6. Verify the completeness relation
4
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