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Irreducible Tensor Operators and the

Wigner-Eckart Theorem†

1. Introduction

The Wigner-Eckart theorem concerns matrix elements of a type that is of frequent occurrence

in all areas of quantum physics, especially in perturbation theory and in the theory of the emis-

sion and absorption of radiation. This theorem allows one to determine very quickly the selection

rules for the matrix element that follow from rotational invariance. In addition, if matrix elements

must be calculated, the Wigner-Eckart theorem frequently offers a way of significantly reducing the

computational effort. We will make quite a few applications of the Wigner-Eckart theorem in this

course.

The Wigner-Eckart theorem is based on an analysis of how operators transform under rotations.

It turns out that operators of a certain type, the irreducible tensor operators, are associated with

angular momentum quantum numbers and have transformation properties similar to those of kets

with the same quantum numbers. An exploitation of these properties leads to the Wigner-Eckart

theorem.

2. Definition of a Rotated Operator

We consider a quantum mechanical system with a ket space upon which rotation operators U(R),

forming a representation of the classical rotation group SO(3), are defined. The representation will

be double-valued if the angular momentum of the system is a half-integer. In these notes we consider

only proper rotations R; improper rotations will be taken up later. The operators U(R) map kets

into new or rotated kets,

|ψ′〉 = U(R)|ψ〉, (1)

where |ψ′〉 is the rotated ket. We will also write this as

|ψ〉 R−−→ U(R)|ψ〉. (2)

In the case of half-integer angular momenta, the mapping above is only determined to within a sign

by the classical rotation R.

† Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/1920/221.html.
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Now if A is an operator, we define the rotated operator A′ by requiring that the expectation

value of the original operator with respect to the initial state be equal to the expectation value of

the rotated operator with respect to the rotated state, that is,

〈ψ′|A′|ψ′〉 = 〈ψ|A|ψ〉, (3)

which is to hold for all initial states |ψ〉. But this implies

〈ψ|U(R)†A′ U(R)|ψ〉 = 〈ψ|A|ψ〉, (4)

or, since |ψ〉 is arbitrary [see Prob. 1.6(b)],

U(R)†A′ U(R) = A. (5)

Solving for A′, this becomes

A′ = U(R)AU(R)†, (6)

which is our definition of the rotated operator. We will also write this in the form,

A
R−−→ U(R)AU(R)†. (7)

Notice that in the case of half-integer angular momenta the rotated operator is specified by the

SO(3) rotation matrix R alone, since the sign of U(R) cancels and the answer does not depend on

which of the two rotation operators is used on the right hand side. This is unlike the case of rotating

kets, where the sign does matter. Equation (7) defines the action of rotations on operators.

3. Scalar Operators

Now we classify operators by how they transform under rotations. First we define a scalar

operator K to be an operator that is invariant under rotations, that is, that satisfies

U(R)K U(R)† = K,
(8)

for all operators U(R). This terminology is obvious. Notice that it is equivalent to the statement

that a scalar operator commutes with all rotations,

[U(R),K] = 0. (9)

If an operator commutes with all rotations, then it commutes in particular with infinitesimal rota-

tions, and hence with the generators J. See Eq. (12.13). Conversely, if an operator commutes with

J (all three components), then it commutes with any function of J, such as the rotation operators.

Thus another equivalent definition of a scalar operator is one that satisfies

[J,K] = 0.
(10)

The most important example of a scalar operator is the Hamiltonian for an isolated system, not

interacting with any external fields. The consequences of this for the eigenvalues and eigenstates of

the Hamiltonian are discussed in Secs. 7 and 10 below.
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4. Vector Operators

In ordinary vector analysis in three-dimensional Euclidean space, a vector is defined as a collec-

tion of three numbers that have certain transformation properties under rotations. It is not sufficient

just to have a collection of three numbers; they must in addition transform properly. Similarly, in

quantum mechanics, we define a vector operator as a vector of operators (that is, a set of three

operators) with certain transformation properties under rotations.

Our requirement shall be that the expectation value of a vector operator, which is a vector of

ordinary or c-numbers, should transform as a vector in ordinary vector analysis. This means that if

|ψ〉 is a state and |ψ′〉 is the rotated state as in Eq. (1), then

〈ψ′|V|ψ′〉 = R〈ψ|V|ψ〉, (11)

where V is the vector of operators that qualify as a genuine vector operator. In case the notation

in Eq. (11) is not clear, we write the same equation out in components,

〈ψ′|Vi|ψ′〉 =
∑

j

Rij〈ψ|Vj |ψ〉. (12)

Equation (11) or (12) is to hold for all |ψ〉, so by Eq. (1) they imply (after swapping R and R
−1)

U(R)VU(R)† = R
−1V, (13)

or, in components,

U(R)Vi U(R)† =
∑

j

Vj Rji.

(14)

We will take Eq. (13) or (14) as the definition of a vector operator.

In the case of a scalar operator, we had one definition (8) involving its properties under conjuga-

tion by rotations, and another (10) involving its commutation relations with the angular momentum

J. The latter is in effect a version of the former, when the rotation is infinitesimal. Similarly, for

vector operators there is a definition equivalent to Eq. (13) or (14) that involves commutation rela-

tions with J. To derive it we let U and R in Eq. (13) have axis-angle form with an angle θ ≪ 1, so

that

U(R) = 1− i

h̄
θn̂ · J, (15)

and

R = I+ θn̂ · J. (16)

See Eqs. (11.22) and (11.32) for the latter. Then the definition (13) becomes

(

1− i

h̄
θn̂ · J

)

V
(

1 +
i

h̄
θn̂ · J

)

= (I− θn̂ · J)V, (17)

or

[n̂ · J,V] = −ih̄ n̂×V. (18)
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Taking the j-th component of this, we have

ni[Ji, Vj ] = −ih̄ ǫjik niVk, (19)

or, since n̂ is an arbitrary unit vector,

[Ji, Vj ] = ih̄ ǫijk Vk.
(20)

Any vector operator satisfies this commutation relation with the angular momentum of the system.

The converse is also true; if Eq. (20) is satisfied, then V is a vector operator. This follows since

Eq. (20) implies Eq. (18) which implies Eq. (17), that is, it implies that the definition (13) is satisfied

for infinitesimal rotations. But it is easy to show that if Eq. (13) is true for two rotations R1 and

R2, then it is true for the product R1R2. Therefore, since finite rotations can be built up as the

product of a large number of infinitesimal rotations (that is, as a limit), Eq. (20) implies Eq. (13)

for all rotations. Equations (13) and (20) are equivalent ways of defining a vector operator.

We have now defined scalar and vector operators. Combining them, we can prove various

theorems. For example, if V and W are vector operators, then V · W is a scalar operator, and

V×W is a vector operator. This is of course just as in vector algebra, except that we must remember

that operators do not commute, in general. For example, it is not generally true that V ·W = W ·V,

or that V×W = −W×V.

If we wish to show that an operator is a scalar, we can compute its commutation relations with

the angular momentum, as in Eq. (10). However, it may be easier to consider what happens when

the operator is conjugated by rotations. For example, the central force Hamiltonian (16.1) is a scalar

because it is a function of the dot products p · p = p2 and x · x = r2. See Sec. 16.2.

5. Examples of Vector Operators

Consider a system consisting of a single spinless particle moving in three-dimensional space, for

which the wave functions are ψ(x) and the angular momentum is L = x×p. To see whether x is a

vector operator (we expect it is), we compute the commutation relations with L, finding,

[Li, xj ] = ih̄ ǫijk xk. (21)

According to Eq. (20), this confirms our expectation. Similarly, we find

[Li, pj] = ih̄ ǫijk pk, (22)

so that p is also a vector operator. Then x×p (see Sec. 4) must also be a vector operator, that is,

we must have

[Li, Lj] = ih̄ ǫijk Lk. (23)

This last equation is of course just the angular momentum commutation relations, but here with a

new interpretation. More generally, by comparing the adjoint formula (13.89) with the commutation

relations (20), we see that the angular momentum J is always a vector operator.
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6. Tensor Operators

Finally we define a tensor operator as a tensor of operators with certain transformation prop-

erties that we will illustrate in the case of a rank-2 tensor. In this case we have a set of 9 operators

Tij , where i, j = 1, 2, 3, which can be thought of as a 3× 3 matrix of operators. These are required

to transform under rotations according to

U(R)Tij U(R)† =
∑

kℓ

TkℓRkiRℓj, (24)

which is a generalization of Eq. (14) for vector operators. As with scalar and vector operators, a

definition equivalent to Eq. (24) may be given that involves the commutation relations of Tij with

the components of angular momentum.

As an example of a tensor operator, let V and W be vector operators, and write

Tij = ViWj . (25)

Then Tij is a tensor operator (it is the tensor product of V with W). This is just an example; in

general, a tensor operator cannot be written as the product of two vector operators as in Eq. (25).

Another example of a tensor operator is the quadrupole moment operator. In a system with a

collection of particles with positions xα and charges qα, where α indexes the particles, the quadrupole

moment operator is

Qij =
∑

α

qα(3xαi xαj − r2α δij). (26)

This is obtained from Eq. (15.88) by setting

ρ(x) =
∑

α

qα δ(x− xα). (27)

The quadrupole moment operator is especially important in nuclear physics, in which the particles

are the protons in a nucleus with charge q = e. Notice that the first term under the sum (26) is an

operator of the form (25), with V = W = xα.

Tensor operators of other ranks (besides 2) are possible; a scalar is considered a tensor operator

of rank 0, and a vector is considered a tensor of rank 1. In the case of tensors of arbitrary rank, the

transformation law involves one copy of the matrix R
−1 = R

t for each index of the tensor.

7. Energy Eigenstates in Isolated Systems

In this section we explore the consequences of rotational invariance for the eigenstates, eigen-

values and degeneracies of a scalar operator. The most important scalar operator in practice is the

Hamiltonian for an isolated system, so for concreteness we will speak of such a Hamiltonian, but the

following analysis applies to any scalar operator.

Let H be the Hamiltonian for an isolated system, and let E be the Hilbert space upon which

it acts. Since H is a scalar it commutes with J, and therefore with the commuting operators J2
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and J3. Let us denote the simultaneous eigenspaces of J2 and J3 with quantum numbers j and m

by Sjm, as illustrated in Fig. 13.5. It was shown in Notes 13 that for a given system, j takes on

certain values that must be either integers or half-integers. For example, in central force motion we

have only integer values of j (which is called ℓ in that context), while for the 57Fe nucleus, which is

discussed in more detail in the next section, we have only half-integer values. For each value of j that

occurs there is a collection of 2j+1 eigenspaces Sjm of J2 and J3, for m = −j, . . . ,+j. These spaces
are mapped invertibly into one another by J+ and J−, as illustrated in Fig. 13.5, and if they are

finite-dimensional, then they all have the same dimension. As in Notes 13, we write Nj = dimSjj ,

which we call the multiplicity of the given j value.

In Notes 13 we constructed a standard angular momentum basis by picking an arbitrary or-

thonormal basis in each stretched space Sjj , with the basis vectors labeled by γ as in Fig. 13.5, where

γ = 1, . . . , Nj . We denote these basis vectors in Sjj by |γjj〉. Then by applying lowering operators,

we construct an orthonormal basis in each of the other Sjm, for m running down to −j. In this

way we construct a standard angular momentum basis |γjm〉 on the whole Hilbert space E . In this

construction, it does not matter how the basis |γjj〉 is chosen in Sjj , as long as it is orthonormal.

Now, however, we have a Hamiltonian, and we would like a simultaneous eigenbasis of H , J2

and J3. To construct this we restrict H to Sjj for some j (see Sec. 1.23 for the concept of the

restriction of an operator to a subspace, and how it is used in proving that commuting operators

possess a simultaneous eigenbasis). This restricted H is a Hermitian operator on Sjj so it possesses

an eigenbasis on that space.

The spectrum of H on Sjj can be either discrete, continuous, or mixed (in most problems we

will consider in this course it has a continuous spectrum above a threshold energy, and may have

discrete bound states below that). Let us focus on the bound states and assume that H possesses

at least one bound eigenstate |ψ〉 on Sjj with corresponding eigenvalue E. Then |ψ〉 satisfies

J2|ψ〉 = j(j + 1)h̄2 |ψ〉, J3|ψ〉 = jh̄ |ψ〉, H |ψ〉 = E|ψ〉. (28)

Now by applying a lowering operator J− we find

J−H |ψ〉 = HJ−|ψ〉 = EJ−|ψ〉, (29)

so that J−|ψ〉 is an eigenstate ofH , lying in the space Sj,j−1, with the same eigenvalue E as |ψ〉 ∈ Sjj .

Continuing to apply lowering operators, we generate a set of 2j+1 linearly independent eigenstates

of H with the same eigenvalue E, that is, E is independent of the quantum number m. These states

span an irreducible, invariant subspace of E .
There may be other irreducible subspaces with the same energy. This can occur in two ways.

It could happen that there is another energy eigenstate in Sjj , linearly independent of |ψ〉, with the

same energy E. That is, it is possible that E is a degenerate eigenvalue of H restricted to Sjj . In

general, every discrete eigenvalue E of H restricted to Sjj corresponds to an eigenspace, a subspace

of Sjj that may be multidimensional. Choosing an orthonormal basis in this subspace and applying
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lowering operators, we obtain a set of orthogonal, irreducible subspaces of the same value of j, each

with 2j + 1 dimensions and all having the same energy.

It could also happen that there is another bound energy eigenstate, in a different space Sj′j′

for j′ 6= j, with the same energy E as |ψ〉 ∈ Sjj . This would be a degeneracy of H that crosses

j values. If such a degeneracy exists, then we have at least two irreducible subspaces of the same

energy, one of dimension 2j + 1 and the other of dimension 2j′ + 1. In other words, degeneracies

can occur either within a given j value or across j values.

These facts that we have accumulated can be summarized by a theorem:

Theorem 1. The discrete energy eigenspaces of an isolated system consist of one or more invari-

ant, irreducible subspaces under rotations, each associated with a definite j value. The different

irreducible subspaces can be chosen to be orthogonal.

Let us look at two examples of how this theorem works out in practice, the first a simple one

with a small number of degrees of freedom that is exactly solvable, and the other a complicated one

with a large number of degrees of freedom, in which all we know about the Hamiltonian is that it is

invariant under rotations.

8. Example: Central Force Motion

For the simple example we take the case of central force motion, for which we use the notation

L, ℓ etc. instead of J, j etc.

In central force motion the stretched subspace Sℓℓ consists of wave functions R(r)Yℓℓ(θ, φ),

where R(r) is any radial wave function. To find the energy eigenstates in this stretched subspace we

solve the radial Schrödinger equation for the given ℓ value, which produces in general a continuous

and a discrete spectrum. We assume there is a discrete spectrum for the given ℓ value and denote the

energy eigenvalues and corresponding radial wave functions by Enℓ and Rnℓ(r), as in Notes 16. By

applying lowering operators to the wave function Rnℓ(r)Yℓℓ(θ, φ), we obtain an irreducible subspace

of degenerate energy eigenfunctions, spanned by {Rnℓ(r)Yℓm(θ, φ),m = +ℓ, . . . ,−ℓ}.
Now we consider degeneracies. Is it possible, for a given value of ℓ in a central force problem,

that a bound energy eigenvalue can be degenerate? That is, can there be more than one linearly

independent bound energy eigenstate of a given energy in Sℓℓ? As discussed in Sec. 16.4, the answer is

no, the boundary conditions on the radial wave functions guarantee that there can be no degeneracy

of this type. In central force problems, we do not have degeneracies within a given ℓ value.

Then is it possible that there is a degeneracy between different values of ℓ? Again, as discussed

in Notes 16, the answer is that in general it is not very likely, since the different radial equations for

different values of ℓ are effectively different Schrödinger equations whose centrifugal potentials are

different.

The fact is that systematic degeneracies require a non-Abelian symmetry. We are already

taking into account the SO(3) symmetry of proper rotations, which explains the degeneracy in the
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magnetic quantum number m, so any additional degeneracy will require a larger symmetry group

than SO(3). In the absence of such extra symmetry, degeneracies between different ℓ values can

occur only by “accident,” that is, by fine tuning parameters in a Hamiltonian to force a degeneracy

to happen. This is not likely in most practical situations. Therefore in central force problems we do

not normally expect degeneracies that cross subspaces of different values of ℓ.

As explained in Notes 17, however, the electrostatic model of hydrogen is a notable exception,

due to the symmetry group SO(4) possessed by this model, which is larger than the rotation group

SO(3). The extra symmetry in this model of hydrogen explains why the energy levels En = −1/2n2

(in the right units) are the same across the angular momentum values ℓ = 0, . . . , n−1. The isotropic

harmonic oscillator in two or more dimensions is another example of a system with extra degeneracy;

such oscillators are approximate models for certain types of molecular vibrations.

For a more complicated example of how Theorem 1 works out in practice we examine some

energy levels of the nucleus 57Fe, which is important in the Mössbauer effect. We use the opportunity

to digress into some of the interesting physics connected with this effect. We begin with a general

discussion of aspects of the emission and absorption of photons by quantum systems.

9. Emission and Absorpton of Photons

When an atom, nucleus or other quantum system is in an excited state B and emits a photon

while dropping into the ground state A,

B → A+ γ, (30)

then in a simple description of the process we say that the energy of the photon is given by

Eγ = EB − EA, (31)

where EB and EA are the energies of the states B and A. If now there is another atom, nucleus or

other system of the same type nearby in its ground state A, then it would appear that that photon

has exactly the right energy to induce the inverse reaction,

A+ γ → B, (32)

thereby lifting the second system into the excited state B.

Does this mean, for example, that when an atom in a gas emits a photon that the photon

only travels as far as the nearest neighboring atom before being absorbed again? No, because there

are several effects that complicate the basic picture just presented, modifying the energy Eγ of the

photon so that is it not exactly given by Eq. (31). These include the natural line width of the

transition B → A; Doppler shifts; recoil; and, in the case of nuclei, what are called chemical shifts.

In quantum mechanics the energy of a system is only precisely defined in a process that takes

place over an infinite amount of time. The excited state B of our system is unstable with some

lifetime τ , so its energy EB is only defined to within an uncertainty of order ∆EB = h̄/τ . Assuming
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A is the ground state, it is stable and can exist over an infinite amount of time, so there is no

uncertainty in its energy. Overall, the uncertainty in the energy EB creates uncertainty of order h̄/τ

to the energy of the photon Eγ emitted in the process (30). This can be seen experimentally; if all

other sources of broadening of the spectral line are eliminated, then the energy of photons emitted

in an atomic or nuclear transition does not have a definite value, but rather there is a spread of

order ∆E = h̄/τ about the nominal value EB − EA. This spread is called the natural line width of

the spectral line. The natural line width of spectral lines is examined in some detail in Notes 43.

Similarly, if a photon of energy Eγ encounters a quantum system of the same type at rest in

its ground state A, then if Eγ is roughly within the range ∆E = h̄/τ about the nominal energy

EB−EA it will be able to lift the second system into the excited state B, that is, the inverse reaction

(32) will take place.

On the other hand, if the emitting atom, nucleus or other quantum system is in a state of

motion, then the frequency ωγ = Eγ/h̄ of the emitted photon will be Doppler shifted and may no

longer be within the resonance needed to raise another such system into its excited state. Writing

simply E for the nominal energy EB − EA of the photon, the velocity v needed to shift the photon

out of resonance is given by
v

c
=

∆E

E
=

h̄

Eτ
. (33)

Whether or not the photon is shifted out of resonance depends on the velocity and other parameters,

but in many practical circumstances one will find that thermal velocities do exceed the value given

by Eq. (33). A similar logic applies in case the receiving system is in a state of motion (or both, as

would be the case of a gas).

Even if the emitting atom or nucleus or other system is at rest, the energy Eγ is not given

exactly by Eq. (31) because of the recoil of the emitting system when the photon is emitted. The

photon has energy E = h̄ω and momentum p = h̄k where ω = c|k|, so by conservation of momentum

the emitting system suffers a recoil and has momentum mv = −h̄k after the photon of frequency ω

is emitted, where m is the mass of the emitting system. Thus Eq. (31) should be replaced by

Eγ +
1

2
mv2 = EB − EA, (34)

where v is the recoil velocity. Some of the available energy goes into kinetic energy of the recoiling

system, and the energy Eγ of the emitted photon is actually less than the nominal value (31). Again,

whether this recoil shift is greater or less than the natural line width depends on the parameters of

the problem.

10. The 57Fe Nucleus and the Mössbauer Effect

The Mössbauer effect involves a transition 57Fe∗ → 57Fe + γ between two energy levels of the
57Fe nucleus, where the simple notation 57Fe (or A) refers to the ground state and 57Fe∗ (or B)

refers to an excited state. These states are illustrated in the energy level diagram for the nucleus
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given in Fig. 1. The photon emitted has energy 14.4 KeV, and the lifetime of the excited state 57Fe∗

is τ = 9.8× 10−8 sec. From these figures we find ∆ω/ω = ∆E/E = 4.7× 10−13, where E and ω are

the energy and frequency of the emitted photon. The spread in the energy is very small compared

to the energy. For example, according to Eq. (33), to Doppler shift the photon out of resonance it

would require a velocity of v/c = 4.7× 10−13, or v = 0.014 cm/sec.

57Co

57Fe∗∗ ( 5
2
,−)

β capture

57Fe∗ ( 3
2
,−)

γ (122 KeV)

57Fe ( 1
2
,−)

γ (14.4 KeV)

γ (136 KeV)

Fig. 1. Energy level diagram relevant for the Mössbauer effect in 57Fe. 57Fe is the ground state, 57Fe∗ is an excited

state, and 57Fe∗∗ is a more highly excited state. Principal transitions via photon emission are shown.

The Mössbauer effect makes use of a source containing iron nuclei in the excited state 57Fe∗,

which emits photons, and a receiver containing iron nuclei in the ground state which may absorb

them by being lifted into the excited state 57Fe∗ via the reverse reaction. The receiver can be a block

of natural iron, which contains the isotope 57Fe at the 2% level, behind which a gamma-ray detector

is placed. If the incident photons are within the narrow resonant range of energies, then they will

be absorbed by the block of iron, and the detector will detect nothing. But if they are shifted out

of resonance, the gamma rays will pass through the block of iron and the detector will detect them.

If there is some effect that shifts the frequency of the gamma rays from their nominal energy (for

example, the gravitational red shift in the Pound-Rebka experiment), then a compensating Doppler

shift can be introduced by giving the source some velocity. By measuring the velocity of the source

needed to shift the gamma rays back into resonance, one can measure the shift caused by the effect

in question.

However, plugging in the numbers shows that the recoil shift described by Eq. (34), where m is

the mass of an iron nucleus, is much greater than the natural line width, so the recoil would seem

to spoil the whole idea. But the iron nucleus is not free, rather it is part of a crystal lattice, whose

vibrations are described by a large number of harmonic oscillators, the normal modes of the lattice.

(See the discussion in Sec. 8.2.) Thus the recoil kinetic energy E = (1/2)mv2 in Eq. (34) is not free

to take on any value, rather it must be some multiple of h̄ω, where ω is the frequency of a normal

mode of the lattice. That is, when the photon is emitted by the nucleus, some number of phonons
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are also emitted into the lattice, representing the recoil energy.

h̄ωM

m

Fig. 2. A one dimensional model of an iron atom coupled to a normal mode of the lattice. The mass of the iron atom
is m, the mass of the crystal is M . The iron atom emits a photon of energy h̄ω and suffers a recoil (an impulse) as a
result.

To model this situation in the simplest possible way, let us imagine an iron atom connected to a

spring, forming a one-dimensional harmonic oscillator, as illustrated in Fig. 2. In the figure m is the

mass of the iron atom while M is the mass of the crystal lattice to which it is coupled. When the

atom emits a photon it suffers an an impulse, that is, a change ∆p in its momentum. The emission

takes place over a short time compared to the frequency of the harmonic oscillator (a normal mode

of the lattice), so the position of the iron atom does not change much during the emission process.

Classically we can model the impulse by the map,

x 7→ x, p 7→ p+∆p. (35)

To model the effect of the recoil in quantum mechanics, we use the momentum displacement operator

S(b) introduced in Notes 8 [see Eqs. (8.64)–(8.66)]. That is, if |ψ〉 is the state of the oscillator before
the photon is emitted, then the state after the emission is

|ψ′〉 = ei∆px/h̄|ψ〉. (36)

The final state can be expanded in energy eigenstates,

|ψ′〉 =
∑

n

cn|n〉, (37)

so that the probability of finding the oscillator in state n after the photon has been emitted is

|cn|2. In particular, if the initial state of the oscillator |ψ〉 = |ni〉 is an energy eigenstate, then the

probability |cn|2 is the probability to make a transition ni → n as a result of the recoil. As we say,

n− ni phonons are emitted.

In fact, there is a certain probability that no phonons are emitted at all, that is n = ni and the

oscillator remains in the initial state. Because of quantum mechanics, the recoil energy cannot take

on any value, but rather is quantized, and the value zero is allowed. What makes the 57Fe nucleus

attractive for the Mössbauer effect is that it has a reasonable probability for this recoilless emission.

Of course there is not only a recoil energy but also a recoil momentum. In the Mössbauer effect,

recoilless emission does not violate conservation of momentum because the entire crystal lattice,

with an effectively infinite mass M (as in the figure) takes up the recoil momentum.

The excited state 57Fe∗ has only a short lifetime but in practice a population of these excited

states is maintained in the source as a part of the decay chain of 57Co, as shown in Fig. 1. 57Co has
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a lifetime of 271 days, which is long enough to make it practical to use it as a source of 57Fe∗ in a

real experiment. As shown in the figure, 57Co transforms into an excited state 57Fe∗∗ by electron

capture, after which 57Fe∗∗ decays by the emission of a photon into 57Fe∗, which is the source of

the photons of interest in the Mössbauer effect.

Mössbauer was awarded the Nobel Prize in 1961 for his discovery of recoilless emission of

gamma ray photons and some of its applications. A notable early application was the Pound-

Rebka experiment, carried out in 1959, in which the Mössbauer effect was used to make the first

measurement of the gravitational red shift. This is the red shift photons experience when climbing

in a gravitational field, in accordance with the 1911 prediction of Einstein. The gravitational red

shift is one of the physical cornerstones of general relativity.

11. Energy levels in 57Fe

To return to the subject of Hamiltonians and their energy levels in isolated systems, let us

draw attention to the three levels 57Fe, 57Fe∗ and 57Fe∗∗, in Fig. 1. These are energy levels of the

Hamiltonian for the 57Fe nucleus, and, according to Theorem 1, each must consist of one or more

irreducible subspaces under rotations. In fact, they each consist of precisely one such irreducible

subspace, with a definite j value, which is indicated in the figure (1
2
for the ground state 57Fe, and

3
2
and 5

2
for the two excited states 57Fe∗ and 57Fe∗∗, respectively). Also indicated are the parities

of these states (all three have odd parity). The parity of energy eigenstates of isolated systems is

discussed in Sec. 20.8.

A model for the Hamiltonian of the 57Fe nucleus views it as a 57-particle system, that is, with

26 protons and 31 neutrons. The Hamiltonian is some function of the positions, momenta and spins

of the particles,

H = H(xα,pα,Sα), (38)

where α = 1, . . . , 57. In this model the total angular momentum of the system is the sum of the

orbital and spin angular momenta of the nucleons,

J =

57
∑

α=1

xα×pα + Sα, (39)

and the “spins” of the various nuclear states shown in Fig. 1 are actually the quantum numbers of

J2 (that is, we call J the “spin” and use the notation S etc. for it). For example, we say that the

ground state 57Fe has spin s = 1
2
.

This model is more or less crude, due to the fact that protons and neutrons are composite

particles, each made up of three quarks, which interact with the quark and gluon fields via the strong

interactions. For our purposes the only thing that matters is that rotations act upon the state space

of the system by means of unitary operators, and that these commute with the Hamiltonian. The

model (38) at least gives us something concrete to think about.
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Each nuclear energy eigenstate consists of a single irreducible subspace under rotations for the

same reasons discussed in connection with central force motion in Sec. 7. That is, extra degeneracy

requires extra symmetry or else an unlikely accident, and neither of these is to be expected in nuclei.

Therefore each energy level is characterized by a unique angular momentum value, as indicated in

the figure.

We can summarize these accumulated facts by stating an addendum to Theorem 1.

Addendum to Theorem 1. With a few exceptions, notably the electrostatic model of hydrogen,

the bound state energy eigenspaces of isolated systems consist of a single invariant, irreducible

subspace under rotations. Thus, the energy eigenvalues are characterized by an angular momentum

quantum number, which is variously denoted ℓ, s, j, etc, depending on the system.

We can now understand why the Hilbert space for spins in magnetic fields consists of a single

irreducible subspace under rotations for a large class of particles, a question that was raised in

Notes 14. For example, if we place the 57Fe nucleus in a magnetic field that is strong by laboratory

standards, say, 10T, then the energy splitting between the two magnetic substates m = ± 1
2
will

be of the order of 100 MHz in frequency units, or about 4 × 10−7eV, or roughly 3 × 10−11 times

smaller than the energy separation from the first excited state 57Fe∗. Therefore it is an excellent

approximation to ignore the state 57Fe∗ and all other excited states of the 57Fe nucleus, and to treat

the Hilbert space of the nucleus as if it were a single irreducible subspace with s = 1
2
, that is, the

ground eigenspace. In other words, in the case of nuclei, the 2s+ 1-dimensional Hilbert space used

in our study of spins in magnetic fields in Notes 14 is actually a subspace of a larger Hilbert space.

It is, in fact, an energy eigenspace of an isolated system. This in turn explains why the magnetic

moment is proportional to the spin [see Prob. 2(a)].

12. The Spherical Basis

We return to our development of the properties of operators under rotations. We take up the

subject of the spherical basis, which is a basis of unit vectors in ordinary three-dimensional space that

is alternative to the usual Cartesian basis. Initially we just present the definition of the spherical basis

without motivation, and then we show how it can lead to some dramatic simplifications in certain

problems. Then we explain its deeper significance. The spherical basis will play an important role

in the development of later topics concerning operators and their transformation properties.

We denote the usual Cartesian basis by ĉi, i = 1, 2, 3, so that

ĉ1 = x̂, ĉ2 = ŷ, ĉ3 = ẑ. (40)

We have previously denoted this basis by êi, but in these notes we reserve the symbol ê for the

spherical basis.

The spherical basis is defined by

ê1 = − x̂+ iŷ√
2

,



14 Notes 19: Irreducible Tensor Operators

ê0 = ẑ,

ê−1 =
x̂− iŷ√

2
. (41)

This is a complex basis, so vectors with real components with respect to the Cartesian basis have

complex components with respect to the spherical basis. We denote the spherical basis vectors

collectively by êq, q = 1, 0,−1.

The spherical basis vectors have the following properties. First, they are orthonormal, in the

sense that

ê∗q · êq′ = δqq′ . (42)

Next, an arbitrary vector X can be expanded as a linear combination of the vectors ê∗q ,

X =
∑

q

ê∗qXq, (43)

where the expansion coefficients are

Xq = êq ·X. (44)

These equations are equivalent to a resolution of the identity in 3-dimensional space,

I =
∑

q

ê∗q êq, (45)

in which the juxtaposition of the two vectors represents a tensor product or dyad notation.

You may wonder why we expand X as a linear combination of ê∗q , instead of êq. The latter

type of expansion is possible too, that is, any vector Y can be written

Y =
∑

q

êqYq, (46)

where

Yq = ê∗q ·Y. (47)

These relations correspond to a different resolution of the identity,

I =
∑

q

êq ê
∗
q . (48)

The two types of expansion give the contravariant and covariant components of a vector with respect

to the spherical basis; in this course, however, we will only need the expansion indicated by Eq. (43).

13. An Application of the Spherical Basis

To show some of the utility of the spherical basis, we consider the problem of dipole radiative

transitions in a single-electron atom such as hydrogen or an alkali. It is shown in Notes 41 that the

transition amplitude for the emission of a photon is proportional to matrix elements of the dipole
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operator between the initial and final states. We use an electrostatic, spinless model for the atom,

as in Notes 16, and we consider the transition from initial energy level Enℓ to final level En′ℓ′ . These

levels are degenerate, since the energy does not depend on the magnetic quantum number m or m′.

The wave functions have the form,

ψnℓm(r, θ, φ) = Rnℓ(r)Yℓm(Ω), (49)

as in Eq. (16.15).

The dipole operator is proportional to the position operator of the electron, so we must evaluate

matrix elements of the form,

〈nℓm|x|n′ℓ′m′〉, (50)

where the initial state is on the left and the final one on the right. The position operator x has

three components, and the initial and final levels consist of 2ℓ + 1 and 2ℓ′ + 1 degenerate states,

respectively. Therefore if we wish to evaluate the intensity of a spectral line as it would be observed,

we really have to evaluate 3(2ℓ′+1)(2ℓ+1) matrix elements, for example, 3×3×5 = 45 in a 3d→ 2p

transition. This is actually an exaggeration, as we shall see, because many of the matrix elements

vanish, but there are still many nonvanishing matrix elements to be calculated.

A great simplification can be achieved by expressing the components of x, not with respect to

the Cartesian basis, but with respect to the spherical basis. First we define

xq = êq · x, (51)

exactly as in Eq.(44). Next, by inspecting a table of the Yℓm’s (see Sec. 15.7), we find that for ℓ = 1

we have

rY11(θ, φ) = −r
√

3

8π
sin θeiφ =

√

3

4π

(

−x+ iy√
2

)

,

rY10(θ, φ) = r

√

3

4π
cos θ =

√

3

4π
(z),

rY1,−1(θ, φ) = r

√

3

8π
sin θe−iφ =

√

3

4π

(x− iy√
2

)

, (52)

where we have multiplied each Y1m by the radius r. On the right hand side we see the spherical

components xq of the position vector x, as follows from the definitions (41). The results can be

summarized by

rY1q(θ, φ) =

√

3

4π
xq, (53)

for q = 1, 0,−1, where q appears explicitly as a magnetic quantum number. This equation reveals

a relationship between vector operators and the angular momentum value ℓ = 1, something we will

have more to say about presently.
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Now the matrix elements (50) become a product of a radial integral times an angular integral,

〈nℓm|xq|n′ℓ′m′〉 =
∫ ∞

0

r2 dr R∗nℓ(r)rRn′ℓ′(r)

×
√

4π

3

∫

dΩY ∗
ℓm(θ, φ)Y1q(θ, φ)Yℓ′m′(θ, φ).

(54)

We see that all the dependence on the three magnetic quantum numbers (m, q,m′) is contained in

the angular part of the integral. Moreover, the angular integral can be evaluated by the three-Yℓm

formula, Eq. (18.67), whereupon it becomes proportional to the Clebsch-Gordan coefficient,

〈ℓm|ℓ′1m′q〉. (55)

The radial integral is independent of the three magnetic quantum numbers (m, q,m′), and the trick

we have just used does not help us to evaluate it. But it is only one integral, and after it has

been done, all the other integrals can be evaluated just by computing or looking up Clebsch-Gordan

coefficients.

The selection rule m = q +m′ in the Clebsch-Gordan coefficient (55) means that many of the

integrals vanish, so we have exaggerated the total number of integrals that need to be done. But had

we worked with the Cartesian components xi of x, this selection rule might not have been obvious.

In any case, even with the selection rule, there may still be many nonzero integrals to be done (nine,

in the case 3d→ 2p).

The example we have just given of simplifying the calculation of matrix elements for a dipole

transition is really an application of the Wigner-Eckart theorem, which we take up later in these

notes.

The process we have just described is not just a computational trick, rather it has a physical

interpretation. The initial and final states of the atom are eigenstates of L2 and Lz, and the photon

is a particle of spin 1 (see Notes 40). Conservation of angular momentum requires that the angular

momentum of the initial state (the atom, with quantum numbers ℓ andm) should be the same as the

angular momentum of the final state (the atom, with quantum numbers ℓ′ and m′, plus the photon

with spin 1). Thus, the selection rule m = m′ + q means that q is the z-component of the spin of

the emitted photon, so that the z-component of angular momentum is conserved in the emission

process. As for the selection rule ℓ ∈ {ℓ′−1, ℓ′, ℓ′+1}, it means that the amplitude is zero unless the

possible total angular momentum quantum number of the final state, obtained by combining ℓ′ ⊗ 1,

is the total angular momentum quantum number of the initial state. This example shows the effect

of symmetries and conservation laws on the selection rules for matrix elements.

This is only an incomplete accounting of the symmetry principles at work in the matrix element

(50) or (54); as we will see in Notes 20, parity also plays an important role.
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14. Significance of the Spherical Basis

To understand the deeper significance of the spherical basis we examine Table 1. The first

row of this table summarizes the principal results obtained in Notes 13, in which we worked out

the matrix representations of angular momentum and rotation operators. To review those results,

we start with a ket space upon which proper rotations act by means of unitary operators U(R), as

indicated in the second column of the table. We refer only to proper rotations R ∈ SO(3), and

we note that the representation may be double-valued. The rotation operators have generators,

defined by Eq. (12.13), that is, that equation can be taken as the definition of J when the rotation

operators U(R) are given. [Equation (12.11) is equivalent.] The components of J satisfy the usual

commutation relations (12.24) since the operators U(R) form a representation of the rotation group.

Next, since J2 and Jz commute, we construct their simultaneous eigenbasis, with an extra index γ

to resolve degeneracies. Also, we require states with different m but the same γ and j to be related

by raising and lowering operators. This creates the standard angular momentum basis (SAMB),

indicated in the fourth column. In the last column, we show how the vectors of the standard angular

momentum basis transform under rotations. A basis vector |γjm〉, when rotated, produces a linear

combination of other basis vectors for the same values of γ and j but different values of m. This

implies that the space spanned by |γjm〉 for fixed γ and j, but for m = −j, . . . ,+j is invariant under
rotations. This space has dimensionality 2j + 1. It is, in fact, an irreducible invariant space (more

on irreducible subspaces below). One of the results of the analysis of Notes 13 is that the matrices

Dj
m′m(U) are universal matrices, dependent only on the angular momentum commutation relations

and otherwise independent of the nature of the system.

Space Action Ang Mom SAMB Action on SAMB

Kets |ψ〉 7→ U |ψ〉 J |γjm〉 U |γjm〉 =
∑

m′

|γjm′〉Dj
m′m

3D Space x 7→ Rx iJ êq Rêq =
∑

q′

êq′D
1
q′q

Operators A 7→ UAU † . . . T k
q UT k

q U
† =

∑

q′

T k
q′D

k
q′q

Table 1. The rows of the table indicate different vector spaces upon which rotations act by means of unitary operators.
The first row refers to a ket space (a Hilbert space of a quantum mechanical system), the second to ordinary three-
dimensional space (physical space), and the third to the space of operators. The operators in the third row are the
usual linear operators of quantum mechanics that act on the ket space, for example, the Hamiltonian. The first column
identifies the vector space. The second column shows how rotations R ∈ SO(3) act on the given space. The third column
shows the generators of the rotations, that is, the 3-vector of Hermitian operators that specify infinitesimal rotations.
The fourth column shows the standard angular momentum basis (SAMB), and the last column, the transformation law
of vectors of the standard angular momentum basis under rotations.

At the beginning of Notes 13 we remarked that the analysis of those notes applies to other

spaces besides ket spaces. All that is required is that we have a vector space upon which rotations
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act by means of unitary operators. For other vectors spaces the notation may change (we will not

call the vectors kets, for example), but otherwise everything else goes through.

The second row of Table 1 summarizes the case in which the vector space is ordinary three-

dimensional (physical) space. Rotations act on this space by means of the matrices R, which, being

orthogonal, are also unitary (an orthogonal matrix is a special case of a unitary matrix). The action

consists of just rotating vectors in the usual sense, as indicated in the second column.

The generators of rotations in this case must be a vector J of Hermitian operators, that is,

Hermitian matrices, that satisfy

U(n̂, θ) = 1− i

h̄
θn̂ · J, (56)

when θ is small. Here U really means the same thing as R, since we are speaking of the action

on three-dimensional space, and 1 means the same as the identity matrix I. We will modify this

definition of J slightly by writing J′ = J/h̄, thereby absorbing the h̄ into the definition of J and

making J′ dimensionless. This is appropriate when dealing with ordinary physical space, since it

has no necessary relation to quantum mechanics. (The spherical basis is also useful in classical

mechanics, for example.) Then we will drop the prime, and just remember that in the case of this

space, we will use dimensionless generators. Then we have

U(n̂, θ) = 1− iθn̂ · J. (57)

But this is equivalent to

R(n̂, θ) = I+ θn̂ · J, (58)

as in Eq. (11.32), where the vector of matrices J is defined by Eq. (11.22). These imply

J = iJ, (59)

as indicated in the third column of Table 1. Writing out the matrices Ji explicitly, we have

J1 =





0 0 0
0 0 −i
0 i 0



 , J2 =





0 0 i
0 0 0
−i 0 0



 , J3 =





0 −i 0
i 0 0
0 0 0



 . (60)

These matrices are indeed Hermitian, and they satisfy the dimensionless commutation relations,

[Ji, Jj ] = iǫijk Jk, (61)

as follows from Eqs. (11.34) and (59).

We can now construct the standard angular momentum basis on three-dimensional space. In

addition to Eq. (60), we need the matrices for J2 and J±. These are

J2 =





2 0 0
0 2 0
0 0 2



 (62)
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and

J± =





0 0 ∓1
0 0 −i
±1 i 0



 . (63)

We see that J2 = 2I, which means that every vector in ordinary space is an eigenvector of J2 with

eigenvalue j(j + 1) = 2, that is, with j = 1. An irreducible subspace with j = 1 in any vector space

must be 3-dimensional, but in this case the entire space is 3-dimensional, so the entire space consists

of a single irreducible subspace under rotations with j = 1.

The fact that physical space carries the angular momentum value j = 1 is closely related to the

fact that vector operators are irreducible tensor operators of order 1, as explained below. It is also

connected with the fact that the photon, which is represented classically by the vector field A(x)

(the vector potential), is a spin-1 particle.

Since every vector in three-dimensional space is an eigenvector of J2, the standard basis consists

of the eigenvectors of J3, related by raising and lowering operators (this determines the phase

conventions of the vectors, relative to that of the stretched vector). But we can easily check that

the spherical unit vectors (41) are the eigenvectors of J3, that is,

J3êq = q êq, q = 0,±1. (64)

Furthermore, it is easy to check that these vectors are related by raising and lowering operators,

that is,

J±êq =
√

(1∓ q)(1 ± q + 1) êq±1, (65)

where J± is given by Eq. (63). Only the overall phase of the spherical basis vectors is not determined

by these relations. The overall phase chosen in the definitions (41) has the nice feature that ê0 = ẑ.

Since the spherical basis is a standard angular momentum basis, its vectors must transform

under rotations according to Eq. (13.85), apart from notation. Written in the notation appropriate

for three-dimensional space, that transformation law becomes

Rêq =
∑

q′

êq′D
1
q′q(R). (66)

We need not prove this as an independent result; it is just a special case of Eq. (13.85). This

transformation law is also shown in the final column of Table 1, in order to emphasize its similarity

to related transformation laws on other spaces.

Equation (66) has an interesting consequence, obtained by dotting both sides with ê∗q′ . We use

a round bracket notation for the dot product on the left hand side, and we use the orthogonality

relation (42) on the right hand side, which picks out one term from the sum. We find

(

ê∗q′ ,Rêq
)

= D1
q′q(R), (67)

which shows that D1
q′q is just the matrix representing the rotation operator on three-dimensional

space with respect to the spherical basis. The usual rotation matrix contains the matrix elements
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with respect to the Cartesian basis, that is,

(

ĉi,Rĉj
)

= Rij . (68)

See Eq. (11.7). For a given rotation, matrices R and D1 are similar (they differ only by a change of

basis).

15. Reducible and Irreducible Spaces of Operators

In the third row of Table 1 we consider the vector space of operators. The operators in question

are the operators that act on the ket space of our quantum mechanical system, that is, they are

the usual operators of quantum mechanics, for example, the Hamiltonian. Linear operators can

be added and multiplied by scalars, so they form a vector space in the mathematical sense, but of

course they also act on vectors (that is, kets). So the word “vector” is used in two different senses

here. Rotations act on operators according to our definition (6), also shown in the second column of

the table. Thus we have another example of a vector space upon which rotation operators act, and

we can expect that the entire construction of Notes 13 will go through again, apart from notation.

Rather than filling in the rest of the table, however, let us return to the definition of a vector

operator, Eq. (14), and interpret it in a different light. That definition concerns the three components

V1, V2 and V3 of a vector operator, each of which is an operator itself, and it says that if we rotate

any one of these operators, we obtain a linear combination of the same three operators. Thus, any

linear combination of these three operators is mapped into another such linear combination by any

rotation, or, equivalently, the space of operators spanned by these three operators is invariant under

rotations. Thus we view the three components of V as a set of “basis operators” spanning this space,

which is a 3-dimensional subspace of the space of all operators. (We assume V 6= 0.) A general

element of this subspace of operators is an arbitrary linear combination of the three basis operators,

that is, it has the form

a1V1 + a2V2 + a3V3 = a ·V, (69)

a dot product of a vector of numbers a and a vector of operators V.

If a subspace of a vector space is invariant under rotations, then we may ask whether it contains

any smaller invariant subspaces. If not, we say it is irreducible. If so, it can be decomposed into

smaller invariant subspaces, and we say it is reducible. The invariant subspaces of a reducible space

may themselves be reducible or irreducible; if reducible, we decompose them further. We continue

until we have only irreducible subspaces. Thus, every invariant subspace can be decomposed into

irreducible subspaces, which in effect form the building blocks of any invariant subspace.

In the case of a ket space, the subspaces spanned by |γjm〉 for fixed γ and j but m = −j, . . . ,+j
is, in fact, an irreducible subspace. The proof of this will not be important to us, but it is not

hard. What about the three-dimensional space of operators spanned by the components of a vector

operator? It turns out that it, too, is irreducible.
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A simpler example of an irreducible subspace of operators is afforded by any scalar operator K.

If K 6= 0, K can be thought of as a basis operator in a one-dimensional space of operators, in which

the general element is aK, where a is a number (that is, the space contains all multiples of K). Since

K is invariant under rotations [see Eq. (8)], this space is invariant. It is also irreducible, because a

one-dimensional space contains no smaller subspace, so if invariant it is automatically irreducible.

We see that both scalar and vector operators are associated with irreducible subspaces of op-

erators. What about second rank tensor operators Tij? Such an “operator” is really a tensor of

operators, that is, 9 operators that we can arrange in a 3× 3 matrix. Assuming these operators are

linearly independent, they span a 9-dimensional subspace of operators that is invariant under rota-

tions, since according to Eq. (24) when we rotate any of these operators we get a linear combination

of the same operators. This space, however, is reducible.

To see this, let us take the example (25) of a tensor operator, that is, Tij = ViWj where V

and W are vector operators. This is not the most general form of a tensor operator, but it will

illustrate the points we wish to make. A particular operator in the space of operators spanned by

the components Tij is the trace of Tij , that is,

trT = T11 + T22 + T33 = V ·W. (70)

Being a dot product of two vectors, this is a scalar operator, and is invariant under rotations.

Therefore by itself it spans a 1-dimensional, irreducible subspace of the 9-dimensional space of

operators spanned by the components of Tij . The remaining (orthogonal) 8-dimensional subspace

can be reduced further, for it possesses a 3-dimensional invariant subspace spanned by the operators,

X3 = T12 − T21 = V1W2 − V2W1,

X1 = T23 − T32 = V2W3 − V3W2,

X2 = T31 − T13 = V3W1 − V1W3, (71)

or, in other words,

X = V×W. (72)

The components of X form a vector operator, so by themselves they span an irreducible invariant

subspace under rotations. As we see, the components of X contain the antisymmetric part of the

original tensor Tij .

The remaining 5-dimensional subspace is irreducible. It is spanned by operators containing the

symmetric part of the tensor Tij , with the trace removed (or, as we say, the symmetric, traceless

part of Tij). The following five operators form a basis in this subspace:

S1 = T12 + T21,

S2 = T23 + T32,

S3 = T31 + T13,

S4 = T11 − T22,

S5 = T11 + T22 − 2T33. (73)
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The original tensor Tij breaks up in three irreducible subspaces, a 1-dimensional scalar (the

trace), a 3-dimensional vector (the antisymmetric part), and the 5-dimensional symmetric, traceless

part. Notice that these dimensionalities are in accordance with the Clebsch-Gordan decomposition,

1⊗ 1 = 0⊕ 1⊕ 2, (74)

which corresponds to the count of dimensionalities,

3× 3 = 1 + 3 + 5 = 9. (75)

This Clebsch-Gordan series arises because the vector operators V and W form two ℓ = 1 irreducible

subspaces of operators, and when we form T according to Tij = ViWj , we are effectively combining

angular momenta as indicated by Eq. (74). The only difference from our usual practice is that we

are forming products of vector spaces of operators, instead of tensor products of ket spaces.

We have examined this decomposition in the special case Tij = ViWj , but the decomposition

itself applies to any second rank tensor Tij . More generally, Cartesian tensors of any rank ≥ 2 are

reducible.

It is possible that a given tensor Tij may have one or more of the three irreducible components

that vanish. The quadrupole moment tensor (26), for example, is already symmetric and traceless,

so its nine components are actually linear combinations of just five independent operators. For

another example, an antisymmetric tensor Tij = −Tji contains only the three-dimensional (vector)

subspace.

For many purposes it is desirable to organize tensors into their irreducible subspaces. This

can be done by going over from the Cartesian to the spherical basis, and then constructing linear

combinations using Clebsch-Gordan coefficients to end up with tensors transforming according to

an irreducible representation of the rotations. We will say more about this process later.

16. Irreducible Tensor Operators

So far we have said nothing about a standard angular momentum basis of operators. The

Cartesian components Vi of a vector operator do form a basis in a 3-dimensional, irreducible subspace

of operators, but they do not transform under rotations as a standard angular momentum basis. We

see this from the definition (14), which shows that if we rotate the basis operators Vi in this subspace,

the coefficients of the linear combinations of the basis operators we obtain are Cartesian components

of the rotation matrix R. When we rotate the basis vectors of a standard angular momentum basis,

the coefficients are components of the D-matrices, as we see in Eq. (13.85). We now define a class

of operators that do transform under rotations as a standard angular momentum basis.

We define an irreducible tensor operator of order k as a set of 2k + 1 operators T k
q , for q =

−k, . . . ,+k, that satisfy

U T k
q U

† =
∑

q′

T k
q′ D

k
q′q(U),

(76)
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for all rotation operators U . We denote the irreducible tensor operator itself by T k, and its 2k + 1

components by T k
q . This definition is really a version of Eq. (13.85), applied to the space of operators.

It means that the components of an irreducible tensor operator are basis operators in a standard

angular momentum basis that spans an irreducible subspace of operators. Thus we place T k
q in the

SAMB column of the third row of Table 1, and the transformation law (76) in the last column. The

three transformation laws in the last column (for three different kinds of spaces) should be compared.

We see that the order k of an irreducible tensor operator behaves like an angular momentum quantum

number j, and q behaves like m.

However, unlike the standard angular momentum basis vectors in ket spaces, irreducible tensor

operators are restricted to integer values of angular momentum quantum number k. The physical

reason for this is that operators, which represent physically observable quantities, must be invariant

under a rotation of 2π; the mathematical reason is that our definition of a rotated operator, given by

Eq. (6), is quadratic U(R), so that the representation of rotations on the vector space of operators

is always a single-valued representation of SO(3).

Let us examine some examples of irreducible tensor operators. A scalar operator K is an

irreducible tensor operator of order 0, that is, it is an example of an irreducible tensor operator T 0
0 .

This follows easily from the fact that K commutes with any rotation operator U , and from the fact

that the j = 0 rotation matrices are simply given by the 1× 1 matrix (1) [see Eq. (13.68)].

Irreducible tensor operators of order 1 are constructed from vector operators by transforming

from the Cartesian basis to the spherical basis. If we let V be a vector operator as defined by

Eq. (13), and define its spherical components by

Vq = T 1
q = êq ·V, (77)

then we have

U(R)VqU(R)† = êq · (R−1V) = (Rêq) ·V

=
∑

q′

Vq′D
1
q′q(R), (78)

where we use Eq. (66).

The electric quadrupole operator is given as a Cartesian tensor in Eq. (26). This Cartesian

tensor is symmetric and traceless, so it contains only 5 independent components, which span an

irreducible subspace of operators. In fact, this subspace is associated with angular momentum value

k = 2. It is possible to introduce a set of operators T 2
q , q = −2, . . . ,+2 that form a standard angular

momentum basis in this space, that is, that form an order 2 irreducible tensor operator. These can

be regarded as the spherical components of the quadrupole moment tensor. We will explore this

subject in more detail later.



24 Notes 19: Irreducible Tensor Operators

17. Commutation Relations of an Irreducible Tensor Operator with J

Above we presented two equivalent definitions of scalar and vector operators, one involving

transformation properties under rotations, and the other involving commutation relations with J. We

will now do the same with irreducible tensor operators. To this end, we substitute the infinitesimal

form (15) of the rotation operator U into both sides of the definition (76).

On the right we will need the D-matrix for an infinitesimal rotation. Since the D-matrix

contains just the matrix elements of U with respect to a standard angular momentum basis [this is

the definition of the D-matrices, see Eq. (13.56)], we require these matrix elements in the case of an

infinitesimal rotation. For θ ≪ 1, Eq. (13.56) becomes

Dj
m′m(n̂, θ) = 〈jm′|

(

1− i

h̄
θn̂ · J

)

|jm〉 = δm′m − i

h̄
θ〈jm′|n̂ · J|jm〉. (79)

Changing notation (jm′m) → (kq′q) and substituting this and Eq. (15) into the definition (76) of

an irreducible tensor operator, we obtain

(

1− i

h̄
θn̂ · J

)

T k
q

(

1 +
i

h̄
θn̂ · J

)

=
∑

q′

T k
q′

(

δq′q −
i

h̄
θ〈kq′|n̂ · J|kq〉

)

, (80)

or, since n̂ arbitrary unit vector,

[J, T k
q ] =

∑

q′

T k
q′〈kq′|J|kq〉. (81)

The operators J on the left- and right-hand sides of Eqs. (80) and (81) are not the same

operators. On the left J is the angular momentum on the same space upon which the operators T k
q

act; in practice this is usually the state space of a quantum system. The J on the right is the angular

momentum operator on a model space in which the matrices Dk
q′q are defined. See the discussion in

Sec. 18.13.

Equation (81) specifies a complete set of commutation relations of the components of J with

the components of an irreducible tensor operator, but it is usually transformed into a different form.

First we take the z-component of both sides and use Jz|kq〉 = h̄q|kq〉, so that

〈kq′|Jz |kq〉 = qh̄ δq′q. (82)

This is Eq. (13.47) with a change of notation. Then Eq. (81) becomes Eq. (89a) below. Next dot

both sides of Eq. (81) with x̂± iŷ, and use

J±|kq〉 =
√

(k ∓ q)(k ± q + 1)h̄ |k, q ± 1〉, (83)

or

〈kq′|J±|kq〉 =
√

(k ∓ q)(k ± q + 1)h̄ δq′,q±1. (84)

This is Eq. (13.48b) with a change of notation. Then we obtain Eq. (89b) below. Finally, take the

i-th component of Eq. (81),

[Ji, T
k
q ] =

∑

q′

T k
q′〈kq′|Ji|kq〉, (85)
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and form the commutator of both sides with Ji,

[Ji, [Ji, T
k
q ]] =

∑

q′

[Ji, T
k
q′ ]〈kq′|Ji|kq〉 =

∑

q′q′′

T k
q′′〈kq′′|Ji|kq′〉〈kq′|Ji|kq〉

=
∑

q′′

T k
q′′〈kq′′|J2

i |kq〉,
(86)

where we have used Eq. (81) again to create a double sum. Finally summing both sides over i, we

obtain,
∑

i

[Ji, [Ji, T
k
q ]] =

∑

q′′

T k
q′′〈kq′′|J2|kq〉. (87)

But

〈kq′′|J2|kq〉 = k(k + 1)h̄2 δq′′q, (88)

a version of Eq. (13.46), so we obtain Eq. (89c) below.

In summary, an irreducible tensor operator satisfies the following commutation relations with

the components of angular momentum:

[Jz , T
k
q ] = h̄q T k

q , (89a)

[J±, T
k
q ] = h̄

√

(k ∓ q)(k ± q + 1)T k
q±1, (89b)

∑

i

[Ji, [Ji, T
k
q ]] = h̄2k(k + 1)T k

q . (89c)

We see that forming the commutator with J± plays the role of a raising or lowering operator for the

components of an irreducible tensor operator. As we did with scalar and vector operators, we can

show that these angular momentum commutation relations are equivalent to the definition (76) of

an irreducible tensor operator. This is done by showing that Eqs. (89) are equivalent to Eq. (76) in

the case of infinitesimal rotations, and that if Eq. (76) is true for any two rotations, it is also true

for their product. Thus by building up finite rotations as products of infinitesimal ones we show

the equivalence of Eqs. (76) and (89). Many books take Eqs. (89) as the definition of an irreducible

tensor operator.

18. Statement and Applications of the Wigner-Eckart Theorem

The Wigner-Eckart theorem is not difficult to remember and it is quite easy to use. In this

section we discuss the statement of the theorem and ways of thinking about it and its applications,

before turning to its proof.

The Wigner-Eckart theorem concerns matrix elements of an irreducible tensor operator with

respect to a standard angular momentum basis of kets, something we will write in a general notation

as 〈γ′j′m′|T k
q |γjm〉. As an example of such a matrix element, you may think of the dipole matrix

elements 〈n′ℓ′m′|xq|nℓm〉 that we examined in Sec. 13. In that case the operator (the position or

dipole operator) is an irreducible tensor operator with k = 1.
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The matrix element 〈γ′j′m′|T k
q |γjm〉 depends on 8 indices, (γ′j′m′; γjm; kq), and in addition

it depends on the specific operator T in question. The Wigner-Eckart theorem concerns the de-

pendence of this matrix element on the three magnetic quantum numbers (m′mq), and states that

that dependence is captured by a Clebsch-Gordan coefficient. More specifically, the Wigner-Eckart

theorem states that 〈γ′j′m′|T k
q |γjm〉 is proportional to the Clebsch-Gordan coefficient 〈j′m′|jkmq〉,

with a proportionality factor that is independent of the magnetic quantum numbers. That propor-

tionality factor depends in general on everything else besides the magnetic quantum numbers, that

is, (γ′j′; γj; k) and the operator in question. The standard notation for the proportionality factor is

〈γ′j′||T k||γj〉, something that looks like the original matrix element except the magnetic quantum

numbers are omitted and a double bar is used. The quantity 〈γ′j′||T k||γj〉 is called the reduced

matrix element. With this notation, the Wigner-Eckart theorem states

〈γ′j′m′|T k
q |γjm〉 = 〈γ′j′||T k||γj〉 〈j′m′|jkmq〉.

(90)

The reduced matrix element can be thought of as depending on the irreducible tensor operator T k

and the two irreducible subspaces (γ′j′) and (γj) that it links. Some authors (for example, Sakurai)

include a factor of 1/
√
2j + 1 on the right hand side of Eq. (90), but here that factor has been

absorbed into the definition of the reduced matrix element. The version (90) is easier to remember

and closer to the basic idea of the theorem.

To remember the Clebsch-Gordan coefficient it helps to suppress the bra 〈γ′j′m′| from the

matrix element and think of the ket T k
q |γjm〉, or, more precisely, the (2j + 1)(2k + 1) kets that

are produced by letting m and q vary over their respective ranges. This gives an example of an

operator with certain angular momentum indices multiplying a ket with certain angular momentum

indices. It turns out that such a product of an operator times a ket has much in common with the

product (i.e., the tensor product) of two kets, insofar as the transformation properties of the product

under rotations are concerned. That is, suppose we were multiplying a ket |kq〉 with the given

angular momentum quantum numbers times another ket |jm〉 with different angular momentum

quantum numbers. Then we could find the eigenstates of total angular momentum by combining

the constituent angular momenta according to k ⊗ j. Actually, in thinking of kets T k
q |jm〉, it is

customary to think of the product of the angular momenta in the reverse order, that is, j ⊗ k. This

is an irritating convention because it makes the Wigner-Eckart theorem harder to remember, but I

suspect it is done this way because in practice k tends to be small and j large.

In any case, thinking of the product of kets, the product

|jm〉 ⊗ |kq〉 = |jkmq〉 (91)

contains various components of total J2 and Jz , that is, it can be expanded as a linear combination

of eigenstates of total J2 and Jz , with expansion coefficients that are the Clebsch-Gordan coeffi-

cients. The coefficient with total angular momentum j′ and z-component m′ is the Clebsch-Gordan

coefficient 〈j′m′|jkmq〉, precisely what appears in the Wigner-Eckart theorem (90).
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Probably the most useful application of the Wigner-Eckart theorem is that it allows us to easily

write down selection rules for the given matrix element, based on the selection rules of the Clebsch-

Gordan coefficient occurring in Eq. (90). In general, a selection rule is a rule that tells us when a

matrix element must vanish on account of some symmetry consideration. The Wigner-Eckart the-

orem provides us with all the selection rules that follow from rotational symmetry; a given matrix

element may have other selection rules based on other symmetries (for example, parity). The selec-

tion rules that follow from the Wigner-Eckart theorem are that the matrix element 〈γj′m′|T k
q |γjm〉

vanishes unless m′ = m+ q and j′ takes on one of the values, |j − k|, |j − k|+ 1, . . . , j + k.

Furthermore, suppose we actually have to evaluate the matrix elements 〈γ′j′m′|T k
q |γjm〉 for

all (2k + 1)(2j + 1) possibilities we get by varying q and m. We must do this, for example, in

computing atomic transition rates. (We need not vary m′ independently, since the selection rules

enforcem′ = m+q.) Then the Wigner-Eckart theorem tells us that we actually only have to do one of

these matrix elements (presumably, whichever is the easiest), because if we know the left hand side of

Eq. (90) for one set of magnetic quantum numbers, and if we know the Clebsch-Gordan coefficient on

the right-hand side, then we can determine the proportionality factor, that is, the reduced matrix

element. Then all the other matrix elements for other values of the magnetic quantum numbers

follow by computing (or looking up) Clebsch-Gordan coefficients. This procedure requires that the

first matrix element we calculate be nonzero.

In some other cases, we have analytic formulas for the reduced matrix element. That was

the case of the application in Sec. 13, where the three-Yℓm formula allowed us to compute the

proportionality factor explicitly.

19. The Wigner-Eckart Theorem for Scalar Operators

Let us consider a scalar operator for which k = q = 0, such as the Hamiltonian H for an isolated

system, that is, with T 0
0 = H . In this case the Clebsch-Gordan coefficient is

〈j′m′|j0m0〉 = δj′j δm′m, (92)

so the Wigner-Eckart theorem can be written

〈γ′j′m′|H |γjm〉 = Cj
γ′γ δj′j δm′m, (93)

where

Cj
γ′γ = 〈γ′j||H ||γj〉. (94)

We write it this way because Cj
γ′γ can be seen as a set of matrices, labeled by j and indexed by (γ′γ).

The size of the j-th matrix is Nj, the multiplicity of the j value in the system under consideration.

In practice the multiplicity is often infinite. The problem of finding the energy eigenvalues of the

system amounts to diagonalizing each of the matrices Cj
γ′γ .
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20. Proof of the Wigner-Eckart Theorem

Consider the product of kets |jm〉⊗ |kq〉 = |jkmq〉 with the given angular momentum quantum

numbers, and consider the (2j+1)(2k+1)-dimensional product space spanned by such kets when we

allow the magnetic quantum numbers m and q to vary over their respective ranges. The eigenstates

|JM〉 of total J2 and Jz in this space are given by the Clebsch-Gordan expansion,

|JM〉 =
∑

mq

|jkmq〉〈jkmq|JM〉. (95)

Moreover, the states |JM〉 for fixed J and M = −J, . . . ,+J form a standard angular momentum

basis in an invariant, irreducible subspace of dimension 2J+1 in the product space. This means that

the basis states |JM〉 are not only eigenstates of total J2 and Jz, but they are also linked by raising

and lowering operators. Equivalently, the states |JM〉 transform as a standard angular momentum

basis under rotations,

U |JM〉 =
∑

M ′

|JM ′〉DJ
M ′M (U). (96)

Now consider the (2j + 1)(2k + 1) kets T k
q |γjm〉 obtained by varying m and q. We construct

linear combinations of these with the same Clebsch-Gordan coefficients as in Eq. (95),

|X ; JM〉 =
∑

mq

T k
q |γjm〉〈jkmq|JM〉, (97)

and define the result to be the ket |X ; JM〉, as indicated. The indices JM in the ket |X ; JM〉
indicate that the left-hand side depends on these indices, because the right hand side does; initially

we assume nothing else about this notation. Similarly, X simply stands for everything else the

left-hand side depends on, that is, X is an abbreviation for the indices (γkj).

However, in view of the similarity between Eqs. (95) and (97), we can guess that |X ; JM〉 is

actually an eigenstate of J2 and Jz with quantum numbers J and M , and that the states |X ; JM〉
are related by raising and lowering operators. That is, we guess

Jz|X ; JM〉 =Mh̄ |X ; JM〉, (98a)

J±|X ; JM〉 =
√

(J ∓M)(J ±M + 1)h̄ |X ; J,M ± 1〉, (98b)

J2|X ; JM〉 = J(J + 1)h̄2 |X ; JM〉. (98c)

If true, this is equivalent to the transformation law,

U |X ; JM〉 =
∑

M ′

|X ; JM ′〉DJ
M ′M (U), (99)

exactly as in Eq. (96). Equations (98) and (99) are equivalent because Eq. (98) can be obtained

from Eq. (99) by specializing to infinitesimal rotations, while Eq. (99) can be obtained from Eq. (98)

by building up finite rotations out of infinitesimal ones.
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In Sec. 21 below we will prove that these guesses are correct. For now we merely explore the

consequences. To begin, since |X ; JM〉 is an eigenstate of J2 and Jz with quantum numbers J and

M , it can be expanded as a linear combination of the standard basis kets |γjm〉 with the same values

j = J and m = M , but in general all possible values of γ. That is, we have an expansion of the

form,

|X ; JM〉 =
∑

γ′

|γ′JM〉CkJMj
γ′γ , (100)

where the indices on the expansion coefficients CkJMj
γ′γ simply list all the parameters they can depend

on. These coefficients, do not, however, depend on M , as we show by applying raising or lowering

operators to both sides, and using Eq. (98b). This gives
√

(J ∓M)(J ±M + 1)h̄ |X ; J,M ± 1〉

=
∑

γ′

√

(J ∓M)(J ±M + 1)h̄ |γ′J,M ± 1〉CkJMj
γ′γ , (101)

or, after canceling the square roots,

|X ; J,M ± 1〉 =
∑

γ′

|γ′J,M ± 1〉CkJMj
γ′γ . (102)

Comparing this to Eq. (100), we see that the expansion coefficients are the same for all M values,

and thus independent of M . We will henceforth write simply CkJj
γ′γ for them.

Now we return to the definition (97) of the kets |X ; JM〉 and use the orthogonality of the

Clebsch-Gordan coefficients (18.50) to solve for the kets T k
q |γjm〉. This gives

T k
q |γjm〉 =

∑

JM

|X ; JM〉〈JM |jkmq〉 =
∑

γ′′JM

|γ′′JM〉CkJj
γ′′γ 〈JM |jkmq〉, (103)

where we use Eq. (100), replacing γ′ with γ′′. Now multiplying this by 〈γ′j′m′| and using the

orthonormality of the basis |γjm〉, we obtain

〈γ′j′m′|T k
q |γjm〉 = Ckj′j

γ′γ 〈j′m′|jkmq〉, (104)

which is the Wigner-Eckart theorem (90) if we identify

Ckj′j
γ′γ = 〈γ′j′||T k||γj〉. (105)

21. Proof of Eq. (99)

To complete the proof of the Wigner-Eckart theorem we must prove Eq. (99), that is, we

must show that the kets |X ; JM〉 transform under rotations like the vectors of a standard angular

momentum basis. To do this we call on the definition of |X ; JM〉, Eq. (97), and apply U to both

sides,

U |X ; JM〉 =
∑

mq

UT k
q U

† U |γjm〉〈jkmq|JM〉. (106)
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Next we use the definition of an irreducible tensor operator (76) and the transformation law for

standard basis vectors under rotations, Eq. (13.85), to obtain

U |X ; JM〉 =
∑

mq

m′q′

T k
q′ |γjm′〉Dj

m′m(U)Dk
q′q(U) 〈jkmq|JM〉. (107)

We now call on Eq. (18.64) with a change of indices,

Dj
m′m(U)Dk

q′q(U) =
∑

J′M ′M ′′

〈jkm′q′|J ′M ′〉DJ′

M ′M ′′ (U) 〈J ′M ′′|jkmq〉, (108)

which expresses the product of D-matrices in Eq. (107) in terms of single D-matrices. When we

substitute Eq. (108) into Eq. (107), the m′q′-sum is doable by the definition (97),

∑

m′q′

T k
q′ |γjm′〉〈jkm′q′|J ′M ′〉 = |X ; J ′M ′〉, (109)

and the mq-sum is doable by the orthogonality of the Clebsch-Gordan coefficients,

∑

mq

〈J ′M ′′|jkmq〉〈jkmq|JM〉 = δJ′J δM ′′M . (110)

Altogether, Eq. (107) becomes

U |X ; JM〉 =
∑

J′M ′M ′′

|X ; J ′M ′〉DJ′

M ′M ′′(U) δJ′J δM ′′M =
∑

M ′

|X ; JM ′〉DJ
M ′M (U). (111)

This proves Eq. (99).

Instead of proving Eq. (99), many authors (for example, Sakurai) prove the equivalent set

of statements (98), which involve the actions of the angular momentum operators on the states

|X ; JM〉. I think the transformation properties under rotations are little easier. In either case, the

rest of the proof is the same.

22. Products of Irreducible Tensor Operators

As we have seen, the idea behind the Wigner-Eckart theorem is that a product of an irreducible

tensor operator T k
q times a ket of the standard basis |γjm〉 transforms under rotations exactly as the

tensor product of two kets of standard bases with the same quantum numbers, |jm〉⊗|kq〉. Similarly,

it turns out that the product of two irreducible tensor operators, say, Xk1

q1 Y
k2

q2 , transforms under

rotations exactly like the tensor product of kets with the same quantum numbers, |k1q1〉 ⊗ |k2q2〉.
In particular, such a product of operators can be represented as a linear combination of irreducible

tensor operators with order k lying in the range |k1 − k2|, . . . , k1 + k2, with coefficients that are

Clebsch-Gordan coefficients. That is, we can write

Xk1

q1 Y
k2

q2 =
∑

kq

T k
q 〈kq|k1k2q1q2〉, (112)
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where the T k
q are new irreducible tensor operators.

To prove this, we first solve for T k
q ,

T k
q =

∑

q1q2

Xk1

q1 Y
k2

q2 〈k1k2q1q2|kq〉, (113)

which we must show is an irreducible tensor operator. To do this, we conjugate both sides of this

with a rotation operator U and use the fact that X and Y are irreducible tensor operators,

UT k
q U

† =
∑

q1q2

UXk1

q1 U
† UY k2

q2 U
† 〈k1k2q1q2|kq〉

=
∑

q1q2

q′
1
q′
2

Xk1

q′
1

Y k2

q′
2

Dk1

q′
1
q1
(U)Dk2

q′
2
q2
(U) 〈k1k2q1q2|kq〉. (114)

Next we use Eq. (18.64) with a change of symbols,

Dk1

q′
1
q1
(U)Dk2

q′
2
q2
(U) =

∑

KQQ′

〈k1k2q′1q′2|KQ′〉DK
Q′Q(U)〈KQ|k1k2q1q2〉, (115)

which we substitute into Eq. (114). Then the q′1q
′
2-sum is doable in terms of the expression (113)

for T k
q ,

∑

q′
1
q′
2

Xk1

q′
1

Y k2

q′
2

〈k1k2q′1q′2|KQ′〉 = TK
Q′ , (116)

and the q1q2-sum is doable by the orthogonality of the Clebsch-Gordan coefficients,

∑

q1q2

〈KQ|k1k2q1q2〉〈k1k2q1q2|kq〉 = δKk δQq. (117)

Then Eq. (114) becomes

UT k
q U

† =
∑

KQQ′

TK
Q′DK

Q′Q δKk δQq =
∑

q′

T k
q′D

k
q′q(U). (118)

This shows that T k
q is an irreducible tensor operator, as claimed.

As an application, two vector operators V and W, may be converted into k = 1 irreducible

tensor operators Vq and Wq by going over to the spherical basis. From these we can construct

k = 0, 1, 2 irreducible tensor operators according to

T k
q =

∑

q1q2

Vq1Wq2 〈11q1q2|kq〉. (119)

This will yield the same decomposition of a second rank tensor discussed in Sec. 15, where we found

a scalar (k = 0), a vector (k = 1), and a symmetric, traceless tensor (k = 2).
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Problems

1. This will help you understand irreducible tensor operators better. Let E be a ket space for some

system of interest, and let A be the space of linear operators that act on E . For example, the

ordinary Hamiltonian is contained in A, as are the components of the angular momentum J, the

rotation operators U(R), etc. The space A is a vector space in its own right, just like E ; operators
can be added, multiplied by complex scalars, etc. Furthermore, we may be interested in certain

subspaces of A, such as the 3-dimensional space of operators spanned by the components Vx, Vy , Vz

of a vector operator V.

Now let S be the space of linear operators that act on A. We call an element of S a “super”

operator because it acts on ordinary operators; ordinary operators in A act on kets in E . We will

denote super-operators with a hat, to distinguish them from ordinary operators. (This terminology

has nothing to do with supersymmetry.)

Given an ordinary operator A ∈ A, it is possible to associate it in several different ways with a

super-operator. For example, we can define a super operator ÂL, which acts by left multiplication:

ÂLX = AX, (120)

where X is an arbitrary ordinary operator. This equation obviously defines a linear super-operator,

that is, ÂL(X + Y ) = ÂLX + ÂLY , etc. Similarly, we can define a super-operator associated with

A by means of right multiplication, or by means of the forming of the commutator, as follows:

ÂRX = XA,

ÂCX = [A,X ].
(121)

There are still other ways of associating an ordinary operator with a super-operator. Let R be a

classical rotation, and let U(R) be a representation of the rotations acting on the ket space E . Thus,
the operators U(R) belong to the space A. Now associate such a rotation operator U(R) in A with

a super-operator Û(R) in S, defined by

Û(R)X = U(R)X U(R)†. (122)

Again, Û(R) is obviously a linear super-operator.

(a) Show that Û(R) forms a representation of the rotations, that is, that

Û(R1)Û(R2) = Û(R1R2). (123)

This is easy.

Now let U(R) be infinitesimal as in Eq. (15), and let

Û(R) = 1− i

h̄
θn̂ · Ĵ. (124)
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(Here the hat on n̂ denotes a unit vector, while that on Ĵ denotes a super-operator.) Express the

super-operator Ĵ in terms of ordinary operators. Write Eqs. (89) in super-operator notation. Work

out the commutation relations of the super-operators Ĵ.

(b) Now write out nine equations, specifying the action of the three super-operators Ĵi on the the

basis operators Vj . Write the answers as linear combinations of the Vj ’s. Then write out six more

equations, specifying the action of the super raising and lowering operators, Ĵ±, on the three Vj .

Now find the operator A that is annihilated by Ĵ+. Do this by writing out the unknown operator

as a linear combination of the Vj ’s, in the form

A = axVx + ayVy + azVz , (125)

and then solving for the coefficients ai. Show that this operator is an eigenoperator of Ĵz with

eigenvalue +h̄. In view of these facts, the operator A must be a “stretched” operator for k = 1;

henceforth write T 1
1 for it. This operator will have an arbitrary, complex multiplicative constant,

call it c. Now apply Ĵ−, and generate T 1
0 and T 1

−1. Choose the constant c to make T 1
0 look as simple

as possible. Then write

T 1
q = êq ·V, (126)

and thereby “discover” the spherical basis.

2. This problem concerns quadrupole moments and spins. It provides some background for prob-

lem 3.

(a) In the case of a nucleus, the spin Hilbert space Espin = span{|sm〉,m = −s, . . . ,+s} is actually

the ground state of the nucleus. It is customary to denote the angular momentum j of the ground

state by s. This state is (2s+1)-fold degenerate. The nuclear spin operator S is really the restriction

of the total angular momentum of the nucleus J to this subspace of the (much larger) nuclear Hilbert

space.

Let Ak
q and Bk

q be two irreducible tensor operators on Espin. As explained in these notes, when

we say “irreducible tensor operator” we are really talking about the collection of 2k + 1 operators

obtained by setting q = −k, . . . ,+k. Use the Wigner-Eckart theorem to explain why any two such

operators of the same order k are proportional to one another. This need not be a long answer.

Thus, all scalars are proportional to a standard scalar (1 is convenient), and all vector operators

(for example, the magnetic moment µ) are proportional to a standard vector (S is convenient), etc.

For a given s, what is the maximum value of k? What is the maximum order of an irreducible

tensor operator that can exist on space Espin for a proton (nucleus of ordinary hydrogen)? A deuteron

(heavy hydrogen)? An alpha particle (nucleus of helium)? These rules limit the electric and magnetic

multipole moments that a nucleus is allowed to have, as is discussed more fully in Notes 26.

(b) Let A and B be two vector operators (on any Hilbert space, not necessarily Espin), with spherical

components Aq, Bq, as in Eq. (77). As explained in the notes, Aq and Bq are k = 1 irreducible
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tensor operators. As explained in Sec. 22, it is possible to construct irreducible tensor operators T k
q

for k = 0, 1, 2 out of the nine operators, {AqBq′ , q, q
′ = −1, 0, 1}. Write out the three operators T 0

0 ,

T 1
1 and T 2

2 in terms of the Cartesian products AiBj . Just look up the Clebsch-Gordan coefficients.

There are nine operators in T 0
0 , T

1
q and T 2

q , but I’m only asking you to compute these three to save

you some work.

Show that T 0
0 is proportional to A · B, that T 1

1 is proportional to a spherical component of

A×B, and that T 2
2 can be written in terms of the components of the symmetric and traceless part

of the Cartesian tensor AiBj , which is

1

2
(AiBj +AjBi)−

1

3
(A ·B)δij . (127)

(c ) In classical electrostatics, the quadrupole moment tensor Qij of a charge distribution ρ(x) is

defined by

Qij =

∫

d3x ρ(x)[3xixj − r2 δij ], (128)

where x is measured relative to some origin inside the charge distribution. The quadrupole mo-

ment tensor is a symmetric, traceless tensor. The quadrupole energy of interaction of the charge

distribution with an external electric field E = −∇φ is

Equad =
1

6

∑

ij

Qij
∂2φ(0)

∂xi∂xj
. (129)

This energy must be added to the monopole and dipole energies, plus the higher multipole energies.

In the case of a nucleus, we choose the origin to be the center of mass, whereupon the dipole

moment and dipole energy vanish. The monopole energy is just the usual Coulomb energy qφ(0),

where q is the total charge of the nucleus. Thus, the quadrupole term is the first nonvanishing

correction. However, the energy must be understood in the quantum mechanical sense.

Let {xα, α = 1, . . . , Z} be the position operators for the protons in a nucleus. The neutrons are

neutral, and do not contribute to the electrostatic energy. The electric quadrupole moment operator

for the nucleus is defined by

Qij = e
∑

α

(3xαixαj − r2α δij), (130)

where e is the charge of a single proton. In an external electric field, the nuclear Hamiltonian

contains a term Hquad, exactly in the form of Eq. (129), but now interpreted as an operator.

The operator Qij , being symmetric and traceless, constitutes the Cartesian specification of a

k = 2 irreducible tensor operator, that you could turn into standard form T 2
q , q = −2, . . . ,+2 using

the method of part (b) if you wanted to. We’ll stay with the Cartesian form here, however. When

the operator Qij is restricted to the ground state (really a manifold of 2s+ 1 degenerate states), it

remains a k = 2 irreducible tensor operator. According to part (a), it must be proportional to some

standard irreducible tensor operator, for which 3SiSj − S2δij is convenient. That is, we must be

able to write

Qij = a(3SiSj − S2δij), (131)
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for some constant a.

It is customary in nuclear physics to denote the “quadrupole moment” of the nucleus by the

real number Q, defined by

Q = 〈ss|Q33|ss〉, (132)

where |ss〉 is the stretched state. Don’t confuse Qij , a tensor of operators, with Q, a single number.

The book, Modern Quantum Mechanics by J. J. Sakurai gives the interaction energy of a nucleus

in an external electric field as

Hint =
eQ

2s(s− 1)h̄2

[(∂2φ

∂x2

)

S2
x +

(∂2φ

∂y2

)

S2
y +

(∂2φ

∂z2

)

S2
z

]

, (133)

where φ is the electrostatic potential for the external field satisfying the Laplace equation ∇2φ = 0

and where the coordinate axes are chosen so that the off-diagonal elements of ∂2φ/∂xi∂xj vanish.

Here φ and its derivatives are evaluated at the center of mass of the nucleus and φ satisfies the

Laplace equation rather than the Poisson equation because the sources of the external electric field

are outside the nucleus.

Express the quantity a in Eq. (131) in terms of Q, and derive a version of Eq. (133). This

equation, copied out of the book, has an error in it; correct it.

3. This is Sakurai, problem 3.29, p. 247; or Sakurai and Napolitano, problem 3.33, p. 261.

A spin- 3
2
nucleus situated at the origin is subjected to an external inhomogeneous electric field.

The basic electric quadrupole interaction is given by Eq. (133) (but corrected), where as above φ

satisfies the Laplace equation and the off-diagonal components ∂2φ/∂xi∂xj vanish. Show that the

interaction energy can be written

A(3S2
z − S2) +B(S2

+ + S2
−), (134)

and express A and B in terms of the nonvanishing second derivatives of φ, evaluated at the origin.

Determine the energy eigenkets (in terms of |m〉, where m = ± 3
2
,± 1

2
) and the corresponding energy

eigenvalues. Is there any degeneracy?

4. Some questions on the Mössbauer effect and the Pound-Rebka experiment.

The gravitational red shift is a prediction of general relativity, but the basic physics behind it

can be understood in elementary terms. In the Pound-Rebka experiment, photons were launched

upward from the ground, just outside a building at Harvard University. These photons were then

received by a detector just outside the window of an upper floor of the building, approximately

20 meters above the ground.

Suppose at the very moment a photon is released at the ground, a physicist with a detector

in hand jumps out of the upper storey window. As the photon is climbing upward in the earth’s

gravitational field, suffering a red shift in the process, the physicist is falling, accelerating downward.

At a certain point the detector captures the photon and the physicist measures its frequency. This
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frequency is blue shifted compared to what it would be if the physicist had just held the detector

out the window, instead of jumping, because of the Doppler shift due to the downward motion of

the detector.

It turns out that the gravitational red shift and the blue shift due to the falling detector (cum

physicist) exactly cancel. Thus, the physicist finds a measured frequency of the photon exactly

equal to the frequency it had when emitted at ground level. You can use this fact to calculate the

gravitational red shift as seen by a detector that is just held out the window, not falling.

This situation is similar to that illustrated in the “shoot the monkey” demonstration used in

elementary physics classes, except that instead of an arrow shot at the monkey particles of light are

used. The basic physical reasoning used here is close to that employed by Einstein in his 1911 paper

which first predicted the gravitational red shift.

(a) If an atom is free (not a part of a crystal lattice or otherwise bound to anything else), then it

suffers some recoil on emitting a photon, which produces a shift ∆ω in the frequency of the emitted

photon. In the case of the 14.4 KeV photon emitted by the 57Fe nucleus, calculate the fractional

shift ∆ω/ω due to this recoil and compare to the natural line width.

(b) If the 57Fe atom is free-floating in a gas at 300 K, calculate the average ∆ω/ω due to the Doppler

shift due to the thermal motion of the atom.

(c) Calculate the ∆ω/ω for the gravitational red shift of the same photon climbing (as in the Pound-

Rebka experiment) about 20 meters in the earth’s gravitational field, and compare to the ∆ω/ω due

to the natural line width. You will see that the experiment was a delicate one that required careful

measurement and attention to systematic errors.


