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Identical Particles†

1. Introduction

Understanding the quantum mechanics of systems of identical particles requires a new postulate,

the symmetrization postulate, in addition to the measurement postulates of quantum mechanics

considered earlier in the course. The symmetrization postulate has far reaching consequences for

the physics of multiparticle systems, and is basic to the understanding of the physical properties of

almost all kinds of aggregates of matter. This applies especially to the statistical and thermodynamic

properties of matter. In these notes we introduce the basic concepts, using diatomic molecules as

an example.

2. The Model

Let us consider a system of two identical particles, interacting by means of a central force

potential. The Hamiltonian is

H =
p2
1

2m
+

p2
2

2m
+ V (|x2 − x1|). (1)

The masses are equal in the two kinetic energy terms because the particles are identical. This

Hamiltonian describes quite a few physical situations, for example, the scattering of two protons at

low velocities (v ≪ c) where the forces are predominantly electrostatic. Low velocity proton-proton

scattering is important in applications, for example, in the study of thermonuclear reaction rates in

the interior of stars.

A system consisting of two protons or two electrons cannot have bound states because the

forces are repulsive. To deal with systems of identical particles that do possess bound states we will

consider diatomic molecules.

Diatomic molecules such as H2, N2 or Cl2 in which the two nuclear species are identical are

called homonuclear diatomics. Diatomics such as HCl and CO are called heteronuclear diatomics.

If the two atoms are chemically identical but the nuclei are different isotopes, for example, in the

hydrogen molecule in which one atom is ordinary hydrogen and the other is deuterium (the molecule

HD), then the molecule is considered heteronuclear.

† Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/1920/221.html.
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We will use the Hamiltonian (1) for homonuclear diatomic molecules. Then the “particles”

whose positions and momenta appear in that Hamiltonian are actually atoms, which are composite

particles. Composite particles are those composed of other particles; in this case, an atom is com-

posed of electrons and a nucleus. Nuclei are also composite particles, being composed of protons

and neutrons, and protons and neutrons are themselves composite, being composed of quarks. As

far as anyone knows, electrons and quarks and some other particles are really fundamental, and not

composed of smaller constituents.

There is the question of what justifies the treatment of a composite particle like an atom as

a single particle, as in the Hamiltonian (1). In reality, the hydrogen molecule H2 consists of two

protons and two electrons, that is, four particles, while the molecule N2 consists of two nuclei

and 14 electrons, and yet the Hamiltonian (1) only involves the coordinates and momenta of two

particles, the atoms. The short answer is the Born-Oppenheimer approximation, which justifies such

a treatment under certain circumstances. One condition on the validity of the Born-Oppenheimer

approximation is that the velocities of the nuclei should be small compared to the velocities of the

electrons. We touched on the Born-Oppenheimer approximation in Notes 16, and will take it up in

somewhat greater depth later, in Notes 38. Problem 38.2 shows how a composite particle acquires

a wave function, in a simple but physically realistic example.

In the Born-Oppenheimer approximation, the atoms are seen as particles whose positions and

masses are the same as those of the nuclei, but which interact with one another by means of an

effective potential V . The dynamics of the electrons does not appear explicitly in this description,

rather it is absorbed into the potential energy function V . This function contains the electrostatic

energy of interaction of the two nuclei (which of course is repulsive), plus the electrostatic energy of

the electrons, both among themselves and with the nuclei, plus the kinetic energy of the electrons.

The electron clouds adjust as the nuclei move about (the charge clouds polarize one another), and

the energy required to bring about this polarization is contained in the potential V . As described

in Notes 16, the potential V (r) for diatomic molecules is strongly repulsive at short distances, it

has an attractive well at intermediate distances with a minimum at some radius r0, and it goes to

zero for large r. The detailed form of this function depends on the nature of the two atoms in the

diatomic, but these qualitative features are the same for essentially all diatomics. See Fig. 16.8.

There is also the question of the spin of the atoms. If the electronic state is 1Σ, in the standard

notation for diatomic molecules (the notation specifies orbital and spin quantum numbers for the

electrons), then it turns out that the spin and orbital angular momentum of the electrons can be

ignored, and the atoms behave as if they were particles with the same spin as the nuclei. In fact,

the ground electronic state of most diatomic molecules (both hetero- and homonuclear) is 1Σ. The

main exception is the molecule O2, which has the unusual electronic ground state 3Σ. For simplicity

in the following discussion of diatomic molecules we will exclude the case of oxygen.

In summary, for the diatomics we shall consider, the two atoms can be treated as particles with

the same mass and spin as the nucleus, but interacting through the effective Born-Oppenheimer
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potential V in Eq. (1).

3. Exchange Symmetry

The Hamiltonian (1) possesses a new type of symmetry that we have not seen before in this

course, namely, exchange. For our two-particle system there is an operator E12 that exchanges

particles 1 and 2. It will be defined precisely in a moment, but it is easy to see that the Hamiltonian

(1) is invariant if the labels of particles 1 and 2 are swapped. This means that the operator E12

satisfies

E†
12HE12 = H. (2)

The exchange operator is unitary and satisfies

E2
12 = 1, (3)

as is obvious since exchanging labels twice brings us back to the original state. From this it follows

that

E−1
12 = E†

12 = E12, (4)

so E12 is also Hermitian. Its eigenvalues are e12 = ±1 (using a lower case e for the eigenvalues).

Equation (2) implies

[E12, H ] = 0, (5)

so E12 is a symmetry operator that commutes with the Hamiltonian. From this all the usual

consequences of symmetries follow. For example, E12 and H possess a simultaneous eigenbasis,

that is, it is possible to organize the eigenstates of H (by forming linear combinations of degenerate

states, if necessary) to make them into eigenstates of E12. This means that the energy eigenstates

can be classified by their behavior (even or odd) under exchange.

To create the simultaneous eigenstates of E12 and H it is convenient to diagonalize E12 first,

since this is easier than diagonalizing H . Operator E12 has only two eigenvalues, so the Hilbert

space breaks up into two orthogonal subspaces,

Etot = Eeven ⊕ Eodd, (6)

where Etot is the entire Hilbert space of wave functions upon which the Hamiltonian (1) acts, and

where Eeven and Eodd are the eigenspaces of E12 corresponding to eigenvalues e12 = +1 and e12 = −1,

respectively. Then in view of Eq. (5), the Hamiltonian H has vanishing matrix elements between

these two subspaces (it does not “connect” the two subspaces), so H can be diagonalized within

each subspace separately. This yields the usual practical advantage of symmetry operators, that is,

it is much easier to diagonalize Hamiltonians on smaller spaces.

These are the usual consequences of having a symmetry operator that commutes with a Hamil-

tonian, and, with the change of a few words, everything we have said would also apply to symmetry

operators such as parity π, which also satisfies π2 = 1. See Sec. 20.10. The exchange operator,
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however, has characteristics that are quite different from other symmetry operators. In particular,

it turns out that only one of the two subspaces Eeven or Eodd is physical. Which one it is depends

on the spin of the identical particles. The other subspace consists of wave functions that simply do

not correspond to anything in the real world.

4. Definition of E12

We now make a precise definition of the exchange operator E12 for a system consisting of two

identical particles. In the following we let E stand for the Hilbert space of a single particle. We

choose an arbitrary orthonormal basis {|α〉} in this space, where α is an index taking on discrete or

continuous values. Then

E = span{|α〉}. (7)

We let Etot be the Hilbert space for the two particle system (same notation as above). If the particles

are identical, as we assume, this Hilbert space can be thought of as the product of two identical

copies of the single particle Hilbert space,

Etot = E ⊗ E . (8)

We will put labels on the spaces E if we wish to indicate to which particle (1 or 2) they refer, for

example,

Etot = E(1) ⊗ E(2). (9)

A basis for the two-particle Hilbert space is the set

{|α〉(1) ⊗ |β〉(2)}, (10)

where α and β are independent indices that label the vectors of two copies of the same basis in E .
Thus, they run over the same values. In Eq. (10) we have indicated the particle number (1 or 2) to

which the basis vectors belong. For brevity we write the basis vectors in Etot as

|α〉(1) ⊗ |β〉(2) = |αβ〉. (11)

Now the exchange operator is defined by

E12|αβ〉 = |βα〉. (12)

This defines the action of E12 on a set of basis vectors; by linearity, the definition is extended to any

linear combination of them, that is, any state in Etot. Properties (3)–(4) follow immediately from

this definition. It turns out this definition is independent of the basis |α〉 chosen in the single-particle

Hilbert space.

There is no clean way to define an exchange operator for particles that are not identical, nor is

there any use for such an operator. We will only use exchange operators for identical particles.
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5. Exchange Operator in Wave Function Language

Let us now see what E12 does to the wave function of the system. We start with the case of a

spinless particle, in which the single particle Hilbert space has the basis of position eigenkets, {|x〉},
where x runs over all of three-dimensional space. Then the basis in Etot is

{|x1〉(1) ⊗ |x2〉(2) = |x1x2〉}, (13)

where we indicate the abbreviated form for the product basis. The vectors x1 and x2 run inde-

pendently over all of three-dimensional space to create the basis. The subscripts on x1, x2 are not

particle labels, they just distinguish two points in three-dimensional space (we could have called

them xa and xb, for example). In terms of this basis, the two-particle wave function is

Ψ(x1,x2) = 〈x1x2|Ψ〉, (14)

that is, it is the scalar product of the system ket |Ψ〉 with the basis vector |x1x2〉. Here and below

we use a capital letter Ψ to refer to the state of a two-particle system. According to Eq. (12) the

action of E12 on these basis states is

E12|x1x2〉 = |x2x1〉. (15)

Now we ask, what is the wave function of the state E12|Ψ〉, call it Ψ′(x1,x2)? By the definition

of the wave function (14) it is

Ψ′(x1,x2) = 〈x1x2|E12|Ψ〉 = 〈x2x1|Ψ〉 = Ψ(x2,x1), (16)

where we allow E12 to act to the left and use Eq. (15). This is a simple rule:

Ψ(x1,x2)
E12−→Ψ(x2,x1). (17)

Next we consider the case of two identical particles with spin s. Here the single particle Hilbert

space E has the basis

{|x〉 ⊗ |m〉 = |xm〉}, (18)

the product of position eigenkets times the eigenkets of Sz, where m = −s, . . . ,+s. Thus we may

take the basis of the two-particle Hilbert space Etot to be

{|x1m1〉(1) ⊗ |x2m2〉(2) = |x1x2m1m2〉}, (19)

where we indicate the abbreviated form for the basis vectors in Etot. In this case the definition (12)

of the exchange operator implies

E12|x1x2m1m2〉 = |x2x1m2m1〉. (20)

In terms of the wave function,

Ψm1m2
(x1,x2) = 〈x1x2m1m2|Ψ〉, (21)

the action of the exchange operator may be written as

Ψm1m2
(x1,x2)

E12−→Ψm2m1
(x2,x1), (22)

that is, exchange swaps both the spin and spatial labels.
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6. The 12C2 Molecule

Let us now consider the 12C2 molecule, a homonuclear diatomic molecule in which both nuclei

have spin 0. This is a perfectly good diatomic molecule whose rotational spectrum can be analyzed

experimentally, but it does not form a gas like H2 or N2 because it is chemically reactive (the carbon

atoms like to form chains, rings, buckyballs, nanotubes, etc). Unfortunately there is no ordinary gas

of homonuclear diatomic molecules with nuclear spin 0 that serves our purposes (4He is a noble gas

and does not form molecules in the ordinary sense, 16O has been excluded because of its unusual

electronic structure, other spin-0 isotopes are radioactive, etc). So we will work with 12C2.

The Hamiltonian describing the vibrations and rotations of this molecule is (1), where the

potential V has a minimum at some radius r0 (the bond length), creating a potential well that

supports bound states. The excitations in this potential well are approximately harmonic for low

quantum numbers, and correspond physically to the quantized vibrations of the molecule. The

molecule can also rotate, and the total quantized energy is approximately the sum of a vibrational

and a rotational contribution. See Eq. (16.82).

As usual with central force Hamiltonians, we may transform (1) from lab coordinates (x1,x2)

to center-of-mass and relative coordinates (R, r), defined in the case of equal masses by

R =
x1 + x2

2
,

r = x2 − x1.

(23)

This is a special case of the transformation presented in Sec. 16.9, in which the two masses are equal.

Under this transformation the Hamiltonian (1) becomes

H =
P2

2M
+

p2

2µ
+ V (r), (24)

where P is the momentum conjugate to the center-of-mass position R, and p is the momentum

conjugate to the relative position r, and where r = |r| is the distance between the two particles.

The mass M = 2m is the total mass of the system, while µ = m/2 is the reduced mass. The

momentum P is physically the total linear momentum of the system (it is p1 + p2). We can write

this Hamiltonian as the sum of a center-of-mass and a relative term,

H = HCM +Hrel, (25)

where

HCM =
P2

2M
(26)

is a free particle Hamiltonian, and where

Hrel =
p2

2µ
+ V (r). (27)

As for the wave function, we may transform it also to the new coordinates (R, r). We will write

Ψ(x1,x2) = Ψ(R, r). (28)
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The Schrödinger equation for (24) separates according to the decomposition (25), so that energy

eigenfunctions have the form

Ψ(R, r) = Φ(R)ψ(r), (29)

where Φ(R) is an eigenfunction of HCM and ψ(r) is an eigenfunction of Hrel. The 2-particle Hilbert

space Etot is spanned by products of basis wave functions of this form, that is, it has the decompo-

sition

Etot = ECM ⊗ Erel, (30)

in addition to the decomposition Eq. (9). We will write Eq. (29) in ket language as

|Ψ〉 = |Φ〉|ψ〉, (31)

omitting the ⊗ for simplicity. The eigenfunction Φ(R) is a free-particle energy eigenfunction, which

we may take to be

Φ(R) = exp(iP ·R/h̄), (32)

where P is the momentum eigenvalue. This plane wave is not the only choice for a free particle

energy eigenfunction, but it is a simple one. As for the relative energy eigenfunction ψ(r), it is a

solution of a central force problem and must have the form

ψnℓm(r) = fnℓ(r)Yℓm(Ω), (33)

where f is the radial wave function and (n, ℓ,m) are the usual central force quantum numbers. With

center-of-mass and relative eigenfunctions (32) and (33), we will write the total energy eigenfunction

(29) in ket language as

|Ψ〉 = |P〉|nℓm〉. (34)

The total energy of the product wave function (29) or (34) is

Etot =
P2

2M
+ Enℓ, (35)

where Enℓ is the central force energy eigenvalue, which is independent of m because of the rotational

invariance of Hrel (and the Wigner-Eckart theorem). In the case of a molecular potential V , this

energy has the approximate form,

Enℓ =
ℓ(ℓ+ 1)h̄2

2I
+ (n+ 1

2 )h̄ω, (36)

where I = µr20 is the moment of inertia of the diatomic at its equilibrium bond length and n

is the quantum number of the approximately harmonic vibrations whose frequency is ω. This

approximation is rough and is valid only for small vibrational quantum numbers n (near the bottom

of the well, where the harmonic approximation is best), but it conveys the right idea about the

rotational-vibrational spectrum of the molecule. Notice that the first term in Eq. (36), the energy

of a rigid rotor of moment of inertia I and angular momentum
√

ℓ(ℓ+ 1)h̄, is also the centrifugal
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potential for a central force Hamiltonian in which the radius r is fixed at the equilibrium bond length

r0. The energy (36) is the sum of a rotational and a vibrational contribution.

Now let us consider the effect of the exchange operator E12 on these energy eigenfunctions. By

swapping labels 1 and 2, it is easy to see from Eq. (23) that R and r transform under E12 according

to
R −→ R,

r −→ −r,
(37)

so the effect on the wave function is

Ψ(R, r)
E12−→Ψ(R,−r). (38)

The center-of-mass position is not affected, but the relative position vector is flipped through the

origin. This behavior reminds us of the parity operator π, which flips all position vectors through the

origin, and, in fact, E12 behaves the same as parity insofar as the relative coordinate is concerned.

As a result it is easy to confuse exchange and parity, a bad idea since physically they are quite

distinct. Nevertheless, since we know what parity does to central force eigenfunctions, it is easy to

see the effect of exchange on two-particle eigenfunctions such as (29). In particular, parity does not

affect the radial wave function fnℓ(r), but it multiplies the Yℓm by (−1)ℓ (a phase that is independent

of m). See Eq. (20.52). As for the center-of-mass part of the wave function, by Eq. (38) exchange

does nothing to it. Altogether, we have

E12|Ψ〉 = E12|P〉|nℓm〉 = (−1)ℓ|Ψ〉. (39)

The energy eigenfunctions are automatically eigenfunctions of E12; this is the simultaneous eigenbasis

whose existence is promised by the commutation relation [E12, H ] = 0. We see that the exchange

quantum number of the energy eigenfunction is (−1)ℓ.

7. The Symmetrization Postulate

So far we have just explored the mathematical consequences of the commutation relation

[E12, H ] = 0. Now, however, we must take into account the important experimental fact that

the states of odd ℓ in the rotational spectrum of 12C2 do not exist. This can be determined by direct

spectroscopic means, and there is similar evidence of missing rotational states, both spectroscopic

and thermodynamic, for other homonuclear diatomic molecules. If one of the carbon atoms is re-

placed by a different isotope, say 14C, then all angular momentum states ℓ are observed. In this

case the masses are no longer equal and some of the transformations we have written down require

modification, and the operator E12 is not very meaningful. Nevertheless, it is meaningful to talk

about the angular momentum states ℓ of the rotor, and all of them are present if the nuclei are not

identical. We can say that in the case of the 12C2 molecule, only the subspace Eeven in Eq. (6) is

physical. It is perfectly possible to write down wave functions that are odd under exchange, includ-

ing perfectly valid eigenfunctions of the Hamiltonian (1), but these do not correspond to anything

physical. They are just mathematical objects without any correspondence with physical reality.
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These facts about the 12C2 molecule are a special case of a collection of experimental evidence

that can be summarized in what we will call the symmetrization postulate:

Symmetrization Postulate. In any system consisting of two or more identical particles, the

wave function is symmetric under the exchange of any two identical bosons, and antisymmetric

under the exchange of any two identical fermions.

Recall that bosons are particles of integer spin, while fermions are particles of half-integer

spin. Notice that a system may contain more than one different species of identical particles, for

example, helium has two identical protons and two identical neutrons in the nucleus, and two

identical electrons orbiting the nucleus. The symmetrization postulate applies to exchange of any

pair of identical particles of any species. We have only defined the exchange operator in these notes

for the case of two identical particles, but the definition is easily extended to multiparticle systems,

something we shall do when we study such systems.

This postulate cannot be derived from the earlier (measurement) postulates of quantum me-

chanics discussed in Notes 2 or 3. Within the context of nonrelativistic quantum mechanics it must

simply be taken as an experimental fact. Indeed it is an experimental fact, and historically this was

how it was discovered. Nevertheless, within the framework of relativistic quantum field theory, it

is possible to justify the symmetrization postulate on the basis of certain reasonable assumptions.

These include the requirement that energy be bounded from below and that relativistic causality

hold (signals cannot travel faster than the speed of light). This theoretical derivation of the sym-

metrization postulate was given by Pauli in 1940, in the form of the famous spin and statistics

theorem. It is regarded as one of the triumphs of relativistic quantum field theory.

Although as we say the symmetrization postulate cannot be derived from the measurement

postulates of quantum mechanics, at least within the nonrelativistic theory, nevertheless it is possible

to see that there are some problems with the measurement postulates as stated earlier when particles

are identical. This is related to the existence of nonphysical operators, which we will mention

momentarily. The measurement situation is discussed more fully in Messiah, Quantum Mechanics.

It has to be regarded as a defect of the wave function language for quantum mechanics that it

is possible to write down wave functions or “states” that do not correspond to any physical reality.

This defect is remedied by methods of quantum field theory, which we will take up later in the course,

in which all states that one can write down are physical. Quantum field theory also incorporates the

exchange symmetry of the states in a natural way (there is no need to discuss exchange operators).

Nevertheless, it is probably more satisfactory from a pedagogical standpoint to continue with wave

function language for the time being, although this does mean that we must keep track of what is

the physical subspace of the nominal Hilbert space we are working with.

The present formalism not only allows us to write down nonphysical wave functions, it also

allows us to write down nonphysical operators. A nonphysical operator is one that takes a state

in the physical subspace of the nominal Hilbert space (one that satisfies the right symmetry under

exchange), and maps it into a nonphysical state (one that does not have the right symmetry). An
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example is the operator xop
1 , where the “op” reminds us that this is an operator and not an eigenvalue

(c-number). We might call this the “operator corresponding to the measurement of the position of

particle 1.” The problem with this operator from a physical standpoint is that you cannot measure

the position of “particle 1.” You can select a region of space (in a two-particle system), and ask

whether there is a particle in that region. But if you find one, you cannot say whether it is particle

1 or particle 2, since they are identical. On the other hand, the operator R = (x1 + x2)/2 is a

physical operator (we omit the “op” superscripts), because it commutes with E12 and hence leaves

the physical subspace invariant.

The same reasoning applies to the spin operators S1 and S2, neither of which is physical. Thus

the magnetic quantum numbers m1 and m2 that appear in the wave function (22), for example, are

really nonphysical. The total spin operator S = S1 + S2, however, and functions of it, are physical,

since they commute with E12. Physical operators correspond to measurements that can actually

be made. Nonphysical operators may be useful for mathematical purposes in manipulating wave

functions, not all of which need be physical, but they do not correspond to anything that can be

measured.

In fact, any operator that attempts to label the particles is nonphysical. It is impossible to

write down a wave function for a system of identical particles without labeling the particles, but no

physics can depend on this labeling. (And with methods of quantum field theory, the necessity for

this labeling disappears.)

8. The Hydrogen Molecule

We now consider the hydrogen molecule H2, in which the nuclei are protons (ordinary hydrogen).

The proton is a fermion with spin 1
2 , so by the symmetrization postulate only the subspace Eodd of

the nominal Hilbert space is physical. Let us see what difference this makes in comparison with the

case of 12C, whose nucleus is a boson.

The Hamiltonian is still (1), with the proton mass m and Born-Oppenheimer potential V for

hydrogen. In particular, there are no spin-dependent terms in the Hamiltonian, which is a purely

spatial operator. More precisely, the energy of the system does depend to a small extent on the

orientation of the proton spins (for example, through the dipole-dipole interaction of the two pro-

tons), but this energy is extremely small compared to the terms present in Eq. (1). The neglect of

these spin-dependent terms in no way affects any of the major conclusions of the following argu-

ment, in which we find a dramatic dependence of the behavior of the hydrogen molecule, depending

on the spin state. This is the normal situation in nonrelativistic quantum mechanics: the direct

magnetic interactions of spins involve only very small energies, but due to the requirements of the

symmetrization postulate, spin ends up having a much bigger effect than the magnetic energy alone

would indicate.

Since the Hamiltonian has the same form as in the case of the 12C2 molecule, most of the

analysis of its eigenfunctions and eigenvalues goes through exactly as in Sec. 6. The only difference
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is that the wave function must be multiplied by a spin part, that is, the total Hilbert space is

Etot = Eorb ⊗ Espin, (40)

where Eorb describes the spatial or orbital degrees of freedom, exactly like Etot in Eq. (30), while

Espin = span{|m1〉(1) ⊗ |m2〉(2) = |m1m2〉}. (41)

The spatial part of the energy eigenfunctions for the H2 molecule have the form shown in Eqs. (29)–

(34); these can be multiplied by any spin wave function (any linear combination of the spin basis

states |m1m2〉) and we will have an energy eigenfunction, since H does not operate on the spin

variables. As for the energies, they are given by Eqs. (35) and (36), exactly as with 12C (of course,

the constants m, ω, etc., are different).

Some eigenfunctions created in this way, however, are nonphysical, because they are not odd

under exchange. To create eigenfunctions that do have the right properties under exchange, it helps

to choose a basis for the spin part of the wave function other than {|m1m2〉}. This basis is what we
called the “uncoupled basis” in Notes. 18. The coupled basis is {|SM〉}, the eigenbasis of S2 and

Sz, where S = S1 + S2. We use capital letters S and M for the quantum numbers of the operators

S2 and Sz , respectively, to indicate that they refer to properties of the multiparticle system. We

use lower case letters s, m, etc., to refer to the properties of a single particle. As noted above,

the operators S2 and Sz commute with E12 and are physical, so their eigenfunctions (which are

nondegenerate) must be eigenfunctions also of E12. See Theorem 1.5.

Indeed, this is the case. If we just write out the Clebsch-Gordan expansion for 1
2 ⊗ 1

2 we get

|00〉 = 1√
2

(

| 12 〉| − 1
2 〉 − | − 1

2 〉| 12 〉
)

, (42)

|11〉 = | 12 〉| 12 〉, (43a)

|10〉 = 1√
2

(

| 12 〉| − 1
2 〉+ | − 1

2 〉| 12 〉
)

, (43b)

|1,−1〉 = | − 1
2 〉| − 1

2 〉, (43c)

which expresses the states |SM〉 on the left hand side as linear combinations of the states |m1m2〉
on the right. The state (42), with S = 0, is called the singlet state (because there is only one

state), while the three states (43), with S = 1, are called the triplet state (because there are three

of them). It follows from direct inspection of this table that all these states |SM〉 are eigenstates

of E12: the singlet state is odd under exchange, while the triplet states (all three of them) are even

under exchange. The exchange symmetry does not depend on the magnetic quantum number M .

We can summarize these facts by writing

E12|SM〉 = σS |SM〉, (44)

where

σS =

{

−1, S = 0,
+1, S = 1

. (45)



12 Notes 28: Identical Particles

If we choose the spin states |SM〉 for the spin part of the energy eigenfunction, then the total

energy eigenfunction for the hydrogen molecule is

|Ψ〉 = |P〉|nℓm〉|SM〉. (46)

Applying the exchange operator, we now find

E12|Ψ〉 = (−1)ℓσS |Ψ〉. (47)

Again we have constructed the simultaneous eigenbasis of E12 and H , whose existence is guaranteed

by [E12, H ] = 0; to do this we had to form some linear combinations, namely precisely those in

Eqs. (42) and (43).

Now in view of the symmetrization postulate, we see that only those states with

(−1)ℓσS = −1 (48)

are physical. This means that if S = 0 (singlet spin state), then ℓ must be even, while if S = 1

(triplet state), then ℓ must be odd. Unlike the case of 12C2, the H2 molecule possesses all rotational

states, both even and odd ℓ; however, the degeneracies are not the same, due to the differing spin

degeneracies. The situation is summarized in Table 1.

name S degen espin12 ℓ eorb12 e12 name

singlet 0 1 −1 even +1 −1 para

triplet 1 3 +1 odd −1 −1 ortho

Table 1. Linkage of spatial and spin exchange symmetry in the H2 molecule and terminology.

At the left of the table is the terminology for the spin state, singlet or triplet, followed by the

spin value S and the spin degeneracy. The quantum number espin12 is the symmetry of the spin part

of the wave function under exchange, that is, it is σS . By the symmetrization postulate, this implies

the opposite exchange symmetry of the spatial part of the wave function, eorb12 , so that the total

exchange symmetry e12 can be −1, as required. In the final column are more names; “para” refers

to a wave function that is spatially symmetric, while “ortho” refers to a spatially antisymmetric

wave function. In the case of the H2 molecule, these names are linked to the spin states as shown in

the table (in other systems there may be a different relation between spatial and spin symmetry).

Corresponding to these names, one sometimes speaks of “parahydrogen” and “orthohydrogen” as if

they were two species of H2.

The degeneracies in particular have an impact on the thermodynamic properties of H2 gas. At

high temperatures (for H2 this means room temperature) the angular momentum quantum number

ℓ is large and there is little relative difference between the energies of the neighboring even and

odd rotational states ℓ and ℓ + 1. Thus the Boltzmann factor exp(−E/kT ) is nearly the same for
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both states, and the relative populations are determined mostly by the degeneracies. Thus, at high

temperatures, H2 gas consists of 25% parahydrogen and 75% orthohydrogen (a 1-to-3 ratio). At

low temperatures, however, the hydrogen molecule mostly drops into the ground rotational state

ℓ = 0, which is a singlet (para) state, so the percentage of parahydrogen approaches 100% at

low temperatures. This is in thermal equilibrium; as you lower the temperature of hydrogen gas,

orthohydrogen molecules in the triplet state must undergo spin flips to convert to parahydrogen in

order to maintain equilibrium. The spin degeneracies play an important role in the specific heat of

hydrogen gas at low temperatures, and, in particular, the specific heat is quite different from what

would be predicted if we did not know about the symmetrization postulate.

Experimental measurements of the rotational spectrum of H2 at low temperatures played an

important role historically in the realization that there is a general relationship between spin and

statistics, although the interpretation of the experimental results was hindered by the fact that the

equilibration time between the spin singlet and triplet states is rather long (it is measured in days,

in the absence of catalysts). This is because the proton spins can only be flipped by magnetic forces,

which are quite weak during the collision of two H2 molecules. Therefore if you cool hydrogen gas at

room temperature down to low temperatures, the ratio of spin singlet and triplet states stays at its

high temperature value (1-to-3) for quite some time (it takes a long time for the system to approach

thermal equilibrium).

These experiments were carried out by Hori in Copenhagen in 1927, and gave results that did

not agree with the theory previously worked out by Hund (because Hori’s hydrogen gas was not

in thermal equilibrium). The discrepancy was resolved by Dennison shortly afterward, who called

attention to the long equilibration time. Dennison at first did not realize the importance of his

result; only as an afterthought, he published another paper in which he pointed out that the data

and its correct interpretation showed that the proton has spin 1
2 and that it obeys Fermi statistics

(antisymmetric wave functions). This was a big breakthrough in the appreciation of the general

relation between spin and statistics. The episode is recounted in The Story of Spin, by Sin-itiro

Tomonaga.

Problems

1. A problem on the hydrogen molecule.

(a) In classical statistical mechanics, each degree of freedom contributes an amount 1
2Nk to the

specific heat Cv, where N is the number of particles and k is the Boltzmann constant. In this

context, a “degree of freedom” means a quadratic term in the Hamiltonian, for example, p2/2 or

x2/2. For example, the three translational degrees of freedom of a molecule contribute 3
2Nk, and

the two rotational degrees of freedom of a diatomic contribute Nk more (the third rotational degree

of freedom about the axis of the molecule is frozen out because of the small moment of inertia).
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Use quantum statistical mechanics to compute the rotational contribution to the specific heat

Cv of H2 gas in both the low and high temperature limits. In each case, just give the dominant

term at low or high temperatures. Give a quantitative condition as to what “low” and “high”

temperatures mean in this case, and work out a characteristic temperature in Kelvins that separates

the two temperature regimes. Hint: in the high temperature limit, evaluate the sum by regarding

it as a Riemann sum approximation to an integral. Then do the integral. The bond length of the

hydrogen molecule is 0.74 Angstrom.

(b) Do the same for D2 gas (deuterium).

2. In working the previous problem, you may have noticed that when you combine equal spins, say,

j1 = j2 = j, according to S = J1 + J2, then the states s = 2j, that is, the states |sms〉 for s = 2j,

are symmetric under exchange E12, the states s = 2j − 1 are antisymmetric, etc. In the following

problem you must not use any properties of the Clebsch-Gordan coefficients, only general properties

of operators such as S2, Sz, E12, etc.

(a) Prove that the states s = 2j are symmetric under exchange (all of them, that is, all 2s + 1 of

them).

(b) Prove that as the total value of s is decreased from its maximum of 2j to its minimum of 0,

the states |sms〉 alternate between symmetric and antisymmetric under exchange. Hint: Review the

general proof for the addition of angular momenta, that says when you combine angular momenta

according to S = J1 + J2, you get j = |j1 − j2|, . . . , j1 + j2. In the present case we are interested

in j1 = j2 = j. Think of the square of (2j + 1)2 lattice points in the m1-m2 plane, representing the

uncoupled basis |m1〉|m2〉.

3. A problem about ortho and parahydrogen.

(a) Consider hydrogen gas at STP (one atmosphere pressure, T = 273K). Let us estimate the time

required for the proton spin in an individual hydrogen molecule to flip, thereby converting a molecule

of orthohydrogen into parahydrogen, or vice versa. The proton spin in a given hydrogen molecule

responds to magnetic fields which are produced by the protons in another hydrogen molecule during

collisions. Estimate the cross section for collision of two hydrogen molecules as σ = 2πa20, where a0

is the Bohr radius. This will be a rough calculation so one or two significant figures will be enough.

Calculate the number of collisions per second that a given hydrogen molecule will experience.

During the collision, the protons in one molecule and those in the other never come much closer

together than a0, because they are cushioned by the electron clouds. Ignoring all angle dependence,

estimate the magnetic field one proton will experience at a distance of a0 from the other proton (in

Gauss). Estimate the time of collision τ as a0/v, where v is the average velocity of the molecules

at the temperature given. Then use this to estimate ∆θ, the angle by which the spin on one proton

changes during the collision time τ , due to the magnetic field of the proton in the other molecule.
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Finally, given that the angles accumulate between collisions by a random walk, estimate the

time required for a total angle of π to accumulate. Take this as an estimate of the equilibration time

for ortho and parahydrogen. You can see the time would be somewhat longer at lower temperatures,

and shorter at higher pressures.

T E T E T E

0 0.0 50 37.1 100 111.3
5 0.0 55 47.4 105 115.8
10 0.0 60 57.2 110 120.0
15 0.0 65 66.4 115 123.9
20 0.2 70 74.9 120 127.7
25 1.4 75 82.5 125 131.4
30 4.4 80 89.4 130 135.0
35 9.8 85 95.6 135 138.5
40 17.5 90 101.3 140 141.9
45 26.9 95 106.5 145 145.3

Table 2. Rotational energy of H2 molecule in thermal equilibrium as a function of temperature. Energy per molecule
is given, in Kelvins; temperature is in Kelvins.

(b) Hydrogen gas at room temperature is lowered to 20K, as measured by a thermometer inserted

into the gas. We do this on a time scale much shorter than the time scale needed to flip spins, as

investigated in part (a). We reduce the pressure enough so that the cold gas can be considered an

ideal gas (and to avoid liquification).

We keep the hydrogen thermally insulated and wait for it to come to thermal equilibrium. What

temperature does the thermometer register when equilibrium is achieved? Use Table 2 to make a

reasonable estimate. Take the bond length of the hydrogen molecule to be 0.74 Angstrom.


