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Notes 24

Fine Structure in Hydrogen

and Alkali Atoms†

1. Introduction

In these notes we consider the fine structure of hydrogen-like and alkali atoms, which

concerns the effects of relativity and spin on the dynamics of the electron. Both these effects

are of the same order of magnitude, and must be treated together in any realistic treatment

of the atomic structure. In fact, spin itself may be thought of as a fundamentally relativistic

phenomenon, although in low energy applications it is usually treated within a nominally

nonrelativistic framework by the inclusion of extra terms in the Schrödinger equation. This

is the approach we shall take in these notes, where we treat the fine structure terms as

perturbations imposed on the simple electrostatic model we have considered so far. The fine

structure terms account for relativistic effects through order (v/c)2, and have the effect of

enlarging the Hilbert space by the inclusion of the spin degrees of freedom, introducing new

quantum numbers, and shifting and splitting the energy levels of the electrostatic model.

The splitting in particular means that spectral lines that appear as singlets under low

resolution become closely spaced multiplets under higher resolution (hence the term “fine

structure”). The fine structure was known experimentally long before a proper theoretical

understanding was achieved, and was an important driving force in theoretical developments

at a certain stage in the history of atomic physics. In addition to its intrinsic interest and

importance in atomic physics, the fine structure is interesting as a window on relativistic

quantum mechanics.

2. The Hamiltonian

Our unperturbed system is a single-electron atom, hydrogen, hydrogen-like or alkali,

† Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/1920/221.html.



2 Notes 24: Fine Structure

in the electrostatic model. The unperturbed Hamiltonian is

H0 =
p2

2m
+ V (r), (1)

where we ignore the small difference between the true electron mass and the reduced mass.

As for the potential, for hydrogen-like atoms it is

V (r) = −Ze
2

r
, (2)

whereas for alkalis it is the central force potential in the model discussed in Sec. 17.9.

Now we add to H0 the fine structure corrections, of which there are three: the rela-

tivistic kinetic energy correction, the Darwin term, and the spin-orbit term. We write the

fine structure Hamiltonian as

HFS = HRKE +HD +HSO, (3)

which we will treat as a perturbation, to be added to the unperturbed Hamiltonian (1). We

will discuss these terms one at a time, giving an idea of their physical significance.

3. The Relativistic Kinetic Energy Correction

Let us recall recall that the energy of a relativistic particle (rest mass plus kinetic

energy) is
√

m2c4 + c2p2 = mc2 +
p2

2m
− p4

8m3c2
+ . . . , (4)

where we have expanded the square root in powers of the momentum, assuming p ≪ mc.

The first term is the rest mass, the second is the nonrelativistic kinetic energy, and the

third is the correction,

HRKE = − p4

8m3c2
. (5)

4. The Spin-Orbit Correction

The spin-orbit term has the form,

HSO = −1

2
µ ·B′, (6)

where µ is the usual magnetic moment of the electron and B′ is the magnetic field as seen

in the electron rest frame (the prime refers to this frame). In the case of hydrogen, this
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magnetic field can be understood as due to the positive charge of the nucleus, which from

the electron’s rest frame appears to be orbiting the electron, creating a current loop. In the

case of the alkalis, the core electrons are also orbiting the valence electron, as seen in the

rest frame of the valence electron, and contribute to the magnetic field in that frame.

Of course, the electron is accelerated, so its rest frame is not an inertial frame. This

means that the simple picture we have described to explain the magnetic field in that

frame does not give full accounting of the physics involved. In particular, it turns out

that in relativity theory, an accelerated frame is associated with a rotation, called Thomas

precession, which has an effect on the form of the spin-orbit interaction.

From another point of view, B′ can be understood as the magnetic field that appears

when we Lorentz transform the electrostatic field in the rest frame of the nucleus (what

we may think of as the “lab” frame) to the frame of the electron. We will assume that

there is no magnetic field in the “lab” frame. Actually, if the nucleus has a nonzero spin,

then it produces a magnetic dipole field, which is responsible for the hyperfine interactions

studied in Notes 26. But even when present, this dipole field is much smaller than the field

B′ responsible for the spin-orbit effects, so we shall ignore it here. Thus, using unprimed

symbols E, B for the “lab” frame, we have

E = −∇Φ =
1

e
∇V =

1

e

1

r

dV

dr
x, B = 0, (7)

where we have used V = −eΦ.
Now let v be the velocity of the electron as seen in the “lab” frame, and γ the usual

factor of time dilation in relativity,

γ =
1

√

1− (v/c)2
= 1 +

1

2

v2

c2
+ . . . , (8)

where we have expanded γ in powers of v/c. Then according to special relativity the electric

and magnetic fields E′ and B′ seen in the frame moving with velocity v with respect to the

lab frame are given by

E′ = γE− (γ − 1)
(v · E)v

v2
+ γ

v

c
×B,

B′ = γB− (γ − 1)
(v ·B)v

v2
− γ

v

c
×E.

(9)

[See Jackson, Classical Electrodynamics, 3rd ed., Eq. (11.149).] This is the general expres-

sion for the Lorentz transformation of electric and magnetic fields between two frames, but

the formulas simplify quite a bit for our application, for which B = 0. Also, we are only
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interested in these formulas to lowest order in v/c, which according to Eq. (8) means that

we can approximate γ ≈ 1 and drop the terms involving (γ − 1). This is because the spin-

orbit term is already a small correction to the energy of the hydrogen atom, of order (v/c)2

compared to the nonrelativistic energies. The result is

E′ = E,

B′ = −v

c
×E.

(10)

Now writing p = mv and using Eq. (7), we have

B′ =
1

emc

1

r

dV

dr
L, (11)

where L = x×p. Then with

µ = − e

mc
S, (12)

where we approximate g ≈ 2, Eq. (6) becomes

HSO =
1

2m2c2
1

r

dV

dr
L · S. (13)

The only remaining question is why there is a factor of 1
2
in Eq. (6). We usually write

the energy of a magnetic dipole in a magnetic field as −µ ·B. This factor is due to Thomas

precession, a purely inertial effect of special relativity that causes accelerated frames to

rotate relative to inertial frames. As we saw in Sec. 14.8 (see also Prob. 18.1), inertial

effects in a rotating frame can enhance or cancel out the effects of a magnetic field; in the

present case, one half of the field B′ is canceled.

Thomas precession is an interesting part of a study of special relativity, but it is prob-

ably overkill to go into it too deeply here, because the correct expression for the spin-orbit

term, including the Thomas factor of 1
2
, emerges automatically from the Dirac equation,

which we will take up later in the course. For those who are curious, I have given a geo-

metrical treatment of Thomas precession in my notes

http://bohr.physics.berkeley.edu/classes/209/f02/thomprec.pdf

To summarize, the spin-orbit term is the magnetic energy of interaction of the spin

with the magnetic field produced by the moving nucleus, corrected for Thomas precession.

5. The Darwin Term

The Darwin term is not as easy to interpret as the other two fine structure terms,

but it can be described as a certain nonlocality in the interaction of the electron with the



Notes 24: Fine Structure 5

electrostatic field described by the potential V . The following is a rough description of the

physics lying behind the Darwin term.

If we confine an electron to a box of width L, then by the uncertainty principle the

momentum takes on values of the order of h̄/L. If L is small enough, we can make this

momentum as large as we like, even relativistic values. Setting p = mc, a characteristic

momentum at which relativistic effects are significant, and solving for L, we obtain

L = λC =
h̄

mc
, (14)

where we now write λC for the length in question, which is called the Compton wave length.

This is the distance scale below which the effects of relativistic quantum mechanics are

important. This length can be defined for any particle, but in the case of the electron we

have

λC = αa0 ≈ 3× 10−11cm, (15)

where α is the fine structure constant and a0 is the Bohr radius. The electron Compton

wave length is about 1/137 times the size of the atom. Notice that this is still substantially

larger than the size of the nucleus, ≈ 10−13cm.

nucleus

A

B

Fig. 1. Feynman diagram for the creation of an electron-positron pair in the orbital motion of an electron in
the hydrogen atom. The diagram is a space-time diagram with time increasing vertically, with the world-lines
of the nucleus and electrons and a positron shown. Starting at the bottom, the electron in orbit around
the nucleus enters at the left. Electron world-lines are indicated with an arrow pointing in the direction of
increasing time. Later, at space-time point A, a photon from the nucleus creates a positron electron pair, so
that for a time there exist two electrons and one positron in the system. The positron world line is indicated
with an arrow pointing backwards in time. At a later time, at space-time point B, the incoming electron
annihilates with the positron, producing a photon that is absorbed by the nucleus. After this, a single electron
continues in its orbit, but, in a sense, it is not the same electron that entered at the bottom. The effect of
diagrams like this is to smear the position of the atomic electron around in space over a distance comparable
to the Compton wavelength.

If an electron is confined to a distance of order of the Compton wave length, then the

corresponding momentum implied by the uncertainty principle implies an energy compa-
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rable to mc2, the rest mass-energy of the electron. Then processes such as pair creation

become possible, that is, the reaction,

e− → e− + e− + e+, (16)

where e− is the electron and e+ is the positron. Such reactions do not literally occur inside

an atom because there is not enough energy (a minimum of 2mc2) to create a positron-

electron pair. But states containing two electrons and a positron do appear virtually, that

is, for a period of time short enough that the violation of conservation of energy cannot be

noticed (that is, times less than h̄/2mc2). From another point of view, such virtual states

appear in perturbation theory when one sums over “intermediate states,” which derive

ultimately from a resolution of the identity. Such a sum can be seen in Eq. (22.8), the

expression for the resolvent operator.

The positron-electron pair created according to Eq. (16) survives for a time of order

h̄/mc2, so, traveling at a velocity comparable to the speed of light, the particles cover a

distance of order h̄/mc = λC before disappearing again. The effect is to smear out the

position of the atomic electron over a distance of order λC . The Feynman diagram for this

process is shown in Fig. 1.

To model this, let f(s) be a smearing function, normalized so that
∫

d3s f(s) = 1. (17)

The smearing function should be a positive function concentrated about s = 0 with a width

comparable to λC . Then the effective energy of interaction of the electron with a potential

V at position x is not V (x), but rather
∫

d3s f(s)V (x+ s). (18)

Assuming that V is slowly varying on the scale of f , we can expand V (x+ s), obtaining

∫

d3s f(s)
[

V (x) + s · ∇V (x) +
1

2

∑

ij

sisj
∂2V

∂xi∂xj
(x) + . . .

]

(19)

Because of the normalization (17) the first term is just V (x), the usual expression for the

potential energy of an electron at position x. Assuming that f(s) is rotationally symmetric,

that is, f(s) = f(s) where s = |s|, then the first correction term in Eq. (19) vanishes. As

for the second term, let us assume a Gaussian model for the smearing function,

f(s) =
1

π3/2λ3C
e−s2/λ2

C , (20)
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where the smearing length is the Compton wave length. Then we can do the integrals (see

Appendix C) for the second order term in Eq. (19),

∫

d3s sisj f(s) =
λ2C
2
δij . (21)

Using this in Eq. (19) we obtain the energy correction,

1

4
λ2C∇2V. (22)

The Darwin term is a term of exactly this form, but with a coefficient of 1/8 instead

of 1/4:

HD =
1

8

h̄2

m2c2
∇2V.‘ (23)

The Darwin term can be derived (with the correct coefficient) by performing a nonrelativistic

expansion on the Dirac equation. See Notes 48.48.

These pseudo-derivations of the fine structure terms are not completely satisfactory,

but for now we will just accept them and use them for practice in perturbation theory.

6. Specializing to Hydrogen-like Atoms

To simplify the notation we switch now to atomic units, which were explained in

Sec. 17.3. See Table 17.1. Notice that in atomic units the fine structure constant becomes

α =
e2

h̄c
=

1

c
≈ 1

137
. (24)

Since the fine structure constant is dimensionless, it has the same value in all systems of

units. Thus, the speed of light in atomic units is c ≈ 137, and the velocity of the electron

in the ground state of hydrogen is given by v0/c = α ≈ 1/137.

Translating the three fine structure terms, (5), (13) and (23) to atomic units, we have

HRKE = −α
2

8
p4, (25a)

HD =
α2

8
∇2V, (25b)

HSO =
α2

2

1

r

dV

dr
L · S. (25c)

Notice the common factor of α2 in front of all three terms.
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If we evaluate the spin-orbit and Darwin terms explicitly for hydrogen-like atoms, for

which V (r) = −Z/r, (1/r)(dV/dr) = Z/r3, and ∇2V = 4πZδ(x), then we obtain

HD = Zα2 π

2
δ(x), (26a)

HSO =
Zα2

2

1

r3
L · S. (26b)

The quantity Zδ(x) occurring in the Darwin term is the charge density of the nucleus,

treated as a point charge. We will henceforth in these notes specialize to the case of

hydrogen-like atoms, returning to the case of alkalis briefly at the end.

All three fine structure terms (25) are multiplied by α2, which is about 5×10−5. As we

shall see, these terms all give corrections to the energies of the electrostatic model that are

of relative order (Zα)2, which is correspondingly small if Z is not too large. This is what we

should expect for relativistic corrections, since the velocity of the electron in the ground state

of a hydrogen-like atom is of the order of (Zα)c, and we expect relativistic corrections to the

energy to go like (v/c)2. Toward the end of the periodic table, however, Zα is no longer so

small (Zα = 0.67 for uranium), and it ceases to be a good approximation to treat relativistic

effects as corrections superimposed on a nonrelativistic model. In such heavy atoms the

fine structure corrections are becoming comparable to the separation between the levels of

the electrostatic model, and it is no longer useful to treat them as perturbations imposed

on that model. Instead, it is more useful to start with a proper relativistic treatment of the

electron, which is the Dirac equation.

7. The Unperturbed System

We now consider applying HFS as a perturbation to H0. As usual in perturbation

theory, we must first understand the unperturbed system. The unperturbed energy levels

are

En = − Z2

2n2
. (27)

If we ignore spin, the unperturbed eigenstates are |nℓmℓ〉, that is, they are central force wave

functions, and they are n2-fold degenerate. However the spin-orbit term (25c) explicitly

involves the spin, so we must enlarge our Hilbert space to include the spin degrees of

freedom. We write

E = Eorb ⊗ Espin (28)

[see Eq. (18.9)] for the entire Hilbert space of the electron, where a convenient basis in Eorb
is the set of unperturbed central force eigenfunctions {|nℓmℓ〉}, and where we use the usual
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basis {|sms〉} in Espin. We put subscripts on the magnetic quantum numbers mℓ and ms

to indicate what kind of angular momentum they represent (orbital and spin, respectively).

The products of these basis states form a basis in E ,

|nℓmℓ〉 ⊗ |sms〉 = |nℓmℓms〉, (29)

what we shall call the uncoupled basis. This basis is an eigenbasis of the complete set of

commuting observables (H0, L
2, Lz, Sz) corresponding to quantum numbers (nℓmℓms). The

quantum number s corresponding to the operator S2 is suppressed, because it is constant

[s = 1
2
, S2 = s(s + 1) = 3

4
]. Since the unperturbed Hamiltonian (1) is a purely orbital

operator, including the spin degrees of freedom does not change the unperturbed energy

eigenvalues (27), but it does double the degeneracies (to 2n2), since there are two spin states

(“up” or “down”) for each orbital eigenfunction.

8. Choosing a Good Basis in Degenerate Perturbation Theory

Since the unperturbed energy levels are degenerate, we must think in terms of degen-

erate perturbation theory, in which the shifts in the energy levels are the eigenvalues of the

matrix of the perturbing Hamiltonian in the eigenspaces of the unperturbed system. In the

present case, the unperturbed levels are 2n2-fold degenerate, so we will have a 2n2 × 2n2

matrix. This matrix will be easier to diagonalize in some bases than others.

The following describes a simple procedure for choosing a good basis. To take a specific

example, let H1 be some perturbing Hamiltonian, perhaps one of the fine structure terms.

If we use the uncoupled basis (29), then the matrix elements needed in perturbation theory

are

〈nℓmℓms|H1|nℓ′m′

ℓm
′

s〉. (30)

Notice the distribution of primes: the index n is the same on both sides of the matrix

element because it labels an unperturbed eigenspace, while the indices ℓ, mℓ and ms are

allowed to be different, since these label the basis states inside the unperturbed eigenspace.

Suppose now that [Lz,H1] = 0. Then we have

0 = 〈nℓmℓms|(LzH1 −H1Lz)|nℓ′m′

ℓm
′

s〉 = (mℓ −m′

ℓ)〈nℓmℓms|H1|nℓ′m′

ℓm
′

s〉, (31)

so either mℓ = m′

ℓ or else the matrix element (30) vanishes. This example illustrates a

general principle, which is that if an operator commutes with an observable belonging to

a complete set of commuting observables, then the operator has diagonal matrix elements

with respect to the quantum number of the observable in the eigenbasis of the complete set.
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This rule can often be used in cases where the Wigner-Eckart theorem does not apply. Its

importance for degenerate perturbation theory is that in setting up the matrix elements of

the perturbing Hamiltonian, we should use an eigenbasis of a complete set of commuting

observables in which as many as possible of the observables commute with the perturbing

Hamiltonian. If we are lucky or clever, the perturbing Hamiltonian will commute with all

members of some complete set of commuting observables, and then its matrix elements will

be entirely diagonal. In this case, the eigenvalues are the diagonal elements, and degenerate

perturbation theory will have been effectively reduced to nondegenerate perturbation theory

(that is, one obtains energy shifts just by computing expectation values, and one will not

have to diagonalize any matrices).

9. A Good Basis for the Fine Structure Perturbations

Therefore in analyzing the fine structure perturbation, we should look for observables

that commute with HFS. The results are summarized in Table 1. We start with HRKE. This

is a purely orbital operator, and is furthermore a scalar. Therefore it commutes with L, the

generator of orbital rotations. Also, since it is purely an orbital operator, it commutes with

S, which implies that it also commutes with J = L+S. Furthermore, since it commutes with

L, S and J, it commutes with any functions of them as well, including L2, S2 and J2. The

term HD is similar; it is also a purely orbital operator, which is a scalar. (The δ-function

can be thought of as the limit of a highly concentrated, rotationally symmetric function

centered on x = 0, which therefore commutes with L.) Therefore HD also commutes with

L, S, J, L2, S2 and J2. However, the term HSO does not commute with either L or S,

since either purely spatial or spin rotations would rotate one half or the other of the dot

product L ·S, and would not leave the dot product invariant. However, HSO does commute

with J, which generates overall rotations of the system and which rotates both L and S

simultaneously. It also commutes with L2 and S2, because of the commutators, [L, L2] = 0

and [S, S2] = 0, and with J2, because it commutes with J.

We see thatHRKE andHD are diagonal in the uncoupled basis (29), but thatHSO is not.

However, all three operators are diagonal in the eigenbasis of the operators (L2, S2, J2, Jz).

This suggests that we use the coupled basis for the perturbation treatment, that is, the

basis in which we have combined angular momenta according to J = L+ S or ℓ⊗ 1
2
, as in

Notes 18. Following Eq. (18.47a), we define the coupled basis in terms of the uncoupled

basis by

|nℓjmj〉 =
∑

mℓ,ms

|nℓmℓms〉〈ℓsmℓms|jmj〉, (32)
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FS Term L L2 S S2 J J2

HRKE Y Y Y Y Y Y

HD Y Y Y Y Y Y

HSO N Y N Y Y Y

Table 1. The table indicates whether the given fine structure term commutes with the given angular mo-
mentum operator (Y = yes, N = no).

where the matrix element is a Clebsch-Gordan coefficient, and where we have suppressed

the constant quantum number s = 1
2
in various places.

Since all three fine structure terms are diagonal in the coupled basis, we only need to

compute their diagonal matrix elements and add them up to get the fine structure energy

shifts. This is the optimal situation in degenerate perturbation theory; there are no matrices

to diagonalize.

Some books, for example, Bransden and Joachain, diagonalize HRKE and HD in the

uncoupled basis, and HSO in the coupled basis, and then add the eigenvalues. This gives

the correct answer for this problem but such a procedure cannot be recommended in gen-

eral since the eigenvalues of a sum of matrices is not equal in general to the sum of the

eigenvalues.

10. The Energy Shift for HRKE

We begin with HRKE in Eq. (25a), for which the desired matrix element is

〈nℓjmj |HRKE|nℓjmj〉 =
∑

mℓ,ms

∑

m′

ℓ
,m′

s

〈jmj |ℓsmℓms〉〈nℓmℓms|HRKE|nℓm′

ℓm
′

s〉〈ℓsm′

ℓm
′

s|jmj〉, (33)

where we have expressed the coupled basis vectors in terms of the uncoupled basis. We do

this because HRKE, being a purely orbital operator, is easier to evaluate in the uncoupled

basis. Since HRKE does not involve the spin, the middle matrix element in Eq. (33) becomes

〈nℓmℓms|HRKE|nℓm′

ℓm
′

s〉 = δms,m′

s
〈nℓmℓ|HRKE|nℓm′

ℓ〉, (34)

where the last matrix element is purely orbital. In fact, it is the matrix element of a scalar

operator with respect to a standard angular momentum basis (under orbital rotations alone),

so by Eq. (19.93), the Wigner-Eckart theorem for scalar operators, it is equal to δmℓ,m
′

ℓ

times a quantity that is independent of magnetic quantum numbers. That quantity can
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be regarded as a reduced matrix element, or it can be taken as the given matrix element

with some convenient set of magnetic quantum numbers inserted, since the answer doesn’t

depend on them anyway. The value zero is convenient, so we have

〈nℓmℓ|HRKE|nℓm′

ℓ〉 = δmℓ,m
′

ℓ
〈nℓ0|HRKE|nℓ0〉. (35)

When we put Eqs. (34) and (35) back into Eq. (33) and use the orthogonality of the Clebsch-

Gordan coefficients [see Eq. (18.50a)], we find simply

〈nℓjmj |HRKE|nℓjmj〉 = 〈nℓ0|HRKE|nℓ0〉. (36)

The energy shifts due to HRKE, which nominally depend on n, ℓ, j and mj , actually depend

only on n and ℓ. We might have guessed this, since HRKE is diagonal in both the coupled

and uncoupled basis (and the answer could not depend on mj in any case, since HRKE is a

scalar operator).

We can now evaluate the final, purely orbital matrix element. We do this by writing

HRKE = −α
2

2
T 2 = −α

2

2
(H0 − V )2, (37)

where T = p2/2 is the kinetic energy. Then we have

〈nℓjmj |HRKE|nℓjmj〉 = −α
2

2
〈nℓ0|(H2

0 −H0V − V H0 + V 2)|nℓ0〉

= −α
2

2
〈nℓ0|(E2

n − 2EnV + V 2)|nℓ0〉. (38)

The final expression involves expectation values of powers of 1/r; the angular integrations

are trivial because of the orthonormality of the Yℓm’s, and the remaining integration is over

the radial variable r. The needed expectation values for hydrogen-like atoms are
〈1

r

〉

=
Z

n2
,

〈 1

r2

〉

=
Z2

n3(ℓ+ 1
2
)

(39)

(see Prob. 17.1) which after some algebra give the final answer in the form,

〈nℓjmj |HRKE|nℓjmj〉 = (Zα)2(−En)
1

n2

(

3

4
− n

ℓ+ 1
2

)

. (40)

Here we have factored out the unperturbed energy −En = Z2/2n2 to show that the energy

corrections are of order (Zα)2 compared to the energy scale of the unperturbed system.
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11. Energy Shift for the Darwin Term

The analysis of the Darwin term HD of Eq. (26a) is similar. Since it is also a purely

spatial scalar operator, its matrix element reduces as in Eq. (36),

〈nℓjmj |HD|nℓjmj〉 = 〈nℓ0|HD|nℓ0〉 = Zα2 π

2
|ψnℓ0(0)|2, (41)

where the δ-function has allowed us to do the integral. Here

ψnℓm(x) = Rnℓ(r)Yℓm(θ, φ) (42)

is the normalized energy eigenfunction. But because of the boundary conditions Rnℓ(r) ∼ rℓ

for small r, the answer will be nonzero only for ℓ = 0 (s-waves). Using Y00 = 1/
√
4π and

the property of the hydrogen-like radial wave functions,

Rn0(0) = 2
(Z

n

)3/2

, (43)

which can be derived from Eqs. (17.21) and (17.28), we can write the final answer in the

form,

〈nℓjmj |HD|nℓjmj〉 = (Zα)2(−En)
1

n
δℓ0. (44)

12. The Spin-Orbit Energy Shift

Finally, we consider the spin-orbit term, HSO of Eq. (26b). Because of the identity,

L · S =
1

2
(J2 − L2 − S2), (45)

its matrix elements can be written,

〈nℓjmj |HSO|nℓjmj〉 =
Zα2

4
[j(j + 1)− ℓ(ℓ+ 1)− s(s+ 1)]〈nℓjmj |

1

r3
|nℓjmj〉. (46)

The remaining matrix element is again of a purely spatial scalar operator, which can be re-

duced to a purely spatial matrix element as in Eq. (36). The result becomes the expectation

value of 1/r3, which in a hydrogen-like atom is given by

〈 1

r3

〉

=
Z3

n3ℓ(ℓ+ 1
2
)(ℓ+ 1)

. (47)

This expectation value diverges for ℓ = 0. But in that case, the operator L is the zero

operator, so we seem to have the form 0/0 for the energy correction. The proper way to

handle this is to smooth out the Coulomb singularity at r = 0, whereupon the expectation
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value of 1/r3 does not diverge, and the answer is seen to vanish for ℓ = 0. Altogether, we

can summarize the answer for ℓ 6= 0 by

〈nℓjmj |HSO|nℓjmj〉 = (Zα)2(−En)
1

2n

j(j + 1)− ℓ(ℓ+ 1)− 3
4

ℓ(ℓ+ 1
2
)(ℓ+ 1)

= (Zα)2(−En)
1

2n















1

(ℓ+ 1
2
)(ℓ+ 1)

, j = ℓ+ 1
2
,

− 1

ℓ(ℓ+ 1
2
)
. j = ℓ− 1

2
.

(48)

13. The Total Fine Structure Energy Shift

All three fine structure corrections, Eqs. (40), (44), and (48), are of order (Zα)2 times

the unperturbed energy levels, as predicted. When we add them up to get the total energy

shift due to the fine structure, the result simplifies after some algebra, and we find

∆EFS = (Zα)2(−En)
1

n2

(

3

4
− n

j + 1
2

)

. (49)

The most remarkable thing about this answer is that it is independent of the orbital

angular momentum quantum number ℓ, although each of the individual terms does depend

on ℓ. However, the total energy shift does depend on j in addition to the principal quantum

number n, so when we take into account the fine structure corrections, the energy levels of

hydrogen-like atoms have the form Enj . Of course the levels do not depend on mj because

the Hamiltonian is a scalar operator. Factoring out the unperturbed energy levels, we can

write the total energy of a hydrogen-like atom in the form,

Enj =

(

− Z2

2n2

)[

1− (Zα)2

n2

(

3

4
− n

j + 1
2

)

+ . . .

]

. (50)

The ellipsis indicates higher order terms that we have not calculated, but it is easy to believe

that they turn into a power series in the quantity (Zα)2.

14. Comparison With the Dirac Equation

The Dirac equation for a hydrogen-like atom can be solved exactly. This does not mean

that the answers agree exactly with the physics, because the Dirac equation, although fully

relativistic, omits some important physics that we will consider later. Nevertheless, it is
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interesting to compare the results of the Dirac equation with the results of our perturbation

calculation above. The Dirac energy levels are

Enj =
mc2

√

√

√

√

√

1 +

[

Zα

n− j − 1
2
+

√

(j + 1
2
)2 − (Zα)2

]2
, (51)

where we revert to Gaussian units. See Sec. 49.17 for details. When this expression is

expanded in powers of Zα, we obtain,

Enj = mc2
[

1− (Zα)2

2n2
+

(Zα)4

2n4

(

3

4
− n

j + 1
2

)

+O
(

(Zα)6
)

]

. (52)

The first term in this expansion is the rest mass-energy, mc2, the next contains the nonrel-

ativistic Bohr energy levels −(1/2n2)(Z2e2/a0), and the third contains the fine structure

corrections (49). Each term is of order (Zα)2 times the previous term.

There is no point in expanding the solution of the Dirac equation beyond the fine

structure term, because there are other physical effects that are not incorporated into the

Dirac equation that are larger than the next term after the fine structure term. Most

important of these are the hyperfine effects, discussed in a subsequent set of notes, and the

Lamb shift, discussed in Sec. 17.

15. Hydrogen-Like Energy Levels in the Fine Structure Model

Let us call the model of a hydrogen-like atom that includes the fine-structure perturba-

tions the fine structure model. It is a refinement on the nonrelativistic, spinless, electrostatic

model we have considered previously. We now examine some features of the energy levels

in the fine structure model of a hydrogen-like atom.

The energy shifts (49) are negative for all values of n and j, so fine structure effects

depress all energy levels. However, smaller values of j are more strongly depressed, so

the total energy (unperturbed plus fine structure) is an increasing function of j. Since

the unperturbed levels did not depend on j, fine structure effects have partially resolved

the degeneracy in the unperturbed levels, which now have the form Enj (instead of just

En). The fact that the levels still do not depend on ℓ means that the hydrogen atom, even

including relativistic corrections, still has some extra symmetry that goes beyond rotational

invariance (in particular, there is still a degeneracy between states of opposite parity).

In first courses on quantum mechanics the spin-orbit term is frequently the only term

considered in treatments of the fine structure. It is true that this term alone is responsible
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for the j-dependence of the perturbed energy levels and their splitting, but unless the

relativistic kinetic energy and Darwin terms are also included, one misses the fact that the

total fine structure energy shifts are independent of ℓ. It is clear from the formula (51) that

this ℓ-degeneracy persists to all orders in the expansion of the Dirac equation in powers of

α.

1s1/2

2s1/2

3s1/2

2p1/2

2p3/2

3p1/2

3p3/2 3d3/2

3d5/2

Fig. 2. Energy level diagram for hydrogen or hydrogen-like atoms, including fine structure, with allowed
electric dipole transitions indicated (Grotrian diagram). Not shown are transitions only involving small
energy differences, such as 3p3/2 → 3s1/2. Diagram is schematic and not to scale; in particular, the fine

structure splittings are of order (Zα)2 times the separation between the levels of different n.

The standard spectroscopic notation for the states of hydrogen-like or alkali atoms is

nℓj , where ℓ is represented by one of the standard symbols, s, p, d, f , etc. For example, the

ground state of hydrogen is the 1s1/2 level. The low lying levels in a hydrogen-like atom

are indicated schematically in Fig. 2.

16. Electric Dipole Transitions in Hydrogen-Like Atoms

Figure 2 also indicates the most important electric dipole transitions in a hydrogen-like

atom. Allowed electric dipole transitions, (n′ℓ′j′m′

j) → (nℓjmj), are those for which the

matrix element

〈nℓjmj |xq |n′ℓ′j′m′

j〉 (53)

is nonzero, where xq is the component of the position operator x with respect to the spherical

basis (19.28). The operator xq is a k = 1 irreducible tensor operator, both under purely
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spatial rotations, generated by L, and under rotations of the whole system, generated by J.

Therefore the Wigner-Eckart theorem can be applied twice. When it is applied to purely

spatial rotations and combined with parity, it gives the selection rule ∆ℓ = ±1 (∆ℓ = 0

would be allowed by the Wigner-Eckart theorem, but is excluded by parity). When the

Wigner-Eckart theorem is applied to total rotations, it gives the selection rules ∆j = 0,±1

and m′

j = mj + q. There is nothing to exclude transitions with ∆j = 0, and, in fact, such

transitions occur. The selection rule involving magnetic quantum numbers gives information

about the polarization of the photon emitted on transitions from some initial to some final

magnetic substate.

Concerning parity, note that it is a purely orbital operator that has no effect on spin.

Thus its action on states of the uncoupled basis is

π|nℓmℓms〉 = (−1)ℓ|nℓmℓms〉. (54)

From this and from Eq. (32), the action of parity on the states of the coupled basis is

π|nℓjmj〉 = (−1)ℓ|nℓjmj〉. (55)

17. The Lamb Shift

The Lamb shift is a shift in the energy levels of the Dirac picture that is due to the

interaction of the electron with the vacuum fluctuations of the quantized electromagnetic

field. It has small effects on all the energy levels, and its most notable feature is that the

effect is different on levels with the same values of n and j but different values of ℓ. Thus,

including the Lamb shift, the energy levels in hydrogen have the form Enℓj , and the only

degeneracy is that due to rotational invariance. All extra or “accidental” degeneracy is

removed.

The most important manifestation of the Lamb shift is in the n = 2 levels of hydrogen.

See Fig. 3. Here the Lamb shift causes the 2s1/2 level to be raised about 1.0 GHz relative

to the 2p1/2 level. This energy difference can be measured with high accuracy with radio

frequency techniques. The detection and theoretical calculation of the Lamb shift was an

important milestone in the history of quantum electrodynamics, because it was one of the

first successful application of renormalization theory. We will consider the Lamb shift in

more detail in later in the course.
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2s1/2

2p1/2

2p3/2

Fine Structure (10.9 GHz)

Lamb Shift (1.0 GHz)

Fig. 3. An expanded view of the n = 2 levels in hydrogen, including the Lamb shift. The splitting due to
the Lamb shift is notable because it introduces an ℓ-dependence into the energies. Its magnitude is about 10
times smaller than the fine structure splitting (on the n = 2 levels).

18. Fine Structure in Alkali Atoms

Most of the analysis presented above for hydrogen-like atoms goes through for the

alkali atoms, with V (r) replaced by the appropriate screened Coulomb potential. The

unperturbed (nonrelativistic) energy levels of the alkalis have the form Enℓ, and are already

strongly split by the ℓ values because of the non-Coulomb nature of the central force. See

Fig. 17.3 for the case of sodium. The three fine structure terms present in hydrogen are

also present in the alkalis, but the relativistic kinetic energy and Darwin terms are not very

interesting, because they cause only small shifts in the energy levels of H0, without splitting

them. That is, the energy shifts produced by these terms have the form ∆Enℓ, and the

energies already depend on n and ℓ. These terms are more interesting in hydrogen, because

of the degeneracy among the different ℓ values. However, the spin-orbit term does split the

alkali levels according to their j values, much as in hydrogen, and produces overall energy

levels of the form Enℓj . The analysis of the spin-orbit splitting in the alkalis proceeds much

as with hydrogen in Sec. 12, yielding

∆ESO =
α2

4
[j(j + 1)− ℓ(ℓ+ 1)− 3

4
]
〈1

r

dV

dr

〉

. (56)

The expectation value is with respect to the wave function ψnℓ0; it must be done numerically

since both V (r) and ψnℓ0 are only known numerically. But the formula (56) does give the

correct dependence on the quantum number j.
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The levels of sodium displayed in Fig. 17.3 do not show the fine structure splitting,

because it is too small on the scale of that diagram. But, for example, if the 3p level is

examined closely, it will be found to be split into a 3p1/2 level and a 3p3/2 level, with the

j = 3/2 level lying 0.00213 eV above the j = 1/2 level. This causes the 3p→ 3s transition

(the yellow sodium D-line) to be a close doublet. The selection rules in the alkali atoms

depend only on the angular momentum quantum numbers, and are the same as in hydrogen.

Problems

1. If a hydrogen atom finds itself in the 2p state (either 2p1/2 or 2p3/2) it will emit a photon

and decay into the ground state in about 10−9 seconds. If it finds itself in the 2s1/2 state,

however, it will remain there much longer.

(a) Explain why the transition 2s1/2 → 1s1/2 is not allowed as an electric dipole transition.

However, due to the Lamb shift, the 2p1/2 state is 1.0 GHz below the 2s1/2 state, and the

electric dipole transition 2s1/2 → 2p1/2 is allowed. If the atom makes this transition, it will

almost immediately drop into the ground state, so the rate of the transition 2s1/2 → 2p1/2

is effectively the decay rate 2s1/2 → 1s1/2 via this mechanism.

(b) It can be shown that rate for an electric dipole transition B → A (in sec−1) is

w =
4

3

ω3e2

h̄c3
|〈B|x|A〉|2, (57)

where A and B are states of a single electron atom, and where ω is the frequency of the

emitted photon. Also, you may note that

|〈B|x|A〉|2 =
∑

q

|〈B|xq|A〉|2, (58)

where xq is the component of the position vector with respect to the spherical basis, as in

Sec. 19.10.

Suppose the initial state is |nℓjmj〉 = |201
2
1
2
〉. Find the transition rate to any 2p1/2

state, as an electric dipole transition. You have to sum the rates to any final 2p1/2 state

that is accessible from the initial state.

I suggest you first express the matrix elements of xq with respect to the hydrogen atom

states in the fine structure model, |nℓjmj〉, in terms of the matrix elements of xq with

respect to the states of the electrostatic model, |nℓmℓ〉. Then evaluate the latter any way

you can, for example, by the method described in Sec. 19.10.
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2. When a spectral line of hydrogen associated with a transition between two states of the

electrostatic model, for example, 2p→ 1s, is examined under high resolution, it appears as

a multiplet, due to the fine structure. How many lines will be seen associated with 2p → 1s?

The 4p → 3s transition has the same energy as 4p → 3d, in the electrostatic model. How

many lines will be seen when the fine structure is taken into account?


