
Physics 221B

Spring 2011

Final Exam

Begin Time: 9am, Monday, May 9, 2011

Exams must be placed in the homework box in

251 LeConte by 6pm, Tuesday, May 10, 2011

This exam has 100 points total.

In this exam, you may refer to the textbooks (both Sakurai books from both semesters),

to the Notes and handouts from both semesters (for example, the xeroxed chapters from

Bjorken and Drell), to the homeworks and homework solutions, to your own class notes,

and to Jackson’s book on eletricity and magnetism (a reference on special relativity). You

may not use any other references, nor may you talk to anyone about the exam.

If you have questions I will hold office hours Tuesday, 9-10am and 1-2pm. You can

also send me an email but I will be out of town on Monday and unable to check my email,

and I don’t guarantee that I can always make an instant response to your emails even on

Tuesday. I’ll do my best, however.

If questions of special relativity arise, I will follow the conventions of Jackson (not

Bjorken and Drell).

1. (JJ-coupling; 30 points) The Hamiltonian (in atomic units) for a neutral atom (N = Z)

can be written H = H0 +H2 +H1, where

H0 =
Z

∑

i=1

(p2
i

2
− Z

ri
+ V̄i

)

,

H2 =

Z
∑

i=1

ξ(ri)Li · Si,

H1 =

Z
∑

i=1

(−V̄i) +
∑

i<j

1

rij
. (1.1)

Here V̄i is the rotationally invariant, self-consistent potential determined by Hartree-Fock

methods, which consists of a local plus a nonlocal term; ξ(r) gives the radial dependence

of the spin-orbit interaction; and Li and Si are the orbital and spin angular momentum

operators for electron i.

The energy eigenvalues E0 of H0 are determined by the electron configuration. We

will be interested in lead (Pb, Z = 82), with two 6p electrons outside closed subshells, and
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bismuth (Bi, Z = 83), with three 6p electrons outside closed subshells. For such heavy

atoms, H2 is larger than H1, so we first solve the Hamiltonian H0, then successively add

the terms H2 and H1, and see what happens to the energy levels and eigenstates.

We can assume that H0 is solved for the ground state configuration, and that it gives

a known energy E0. This would involve Hartree-Fock theory, and would give us the central

potential V̄i. Next we add H2 and write

H0 +H2 =

Z
∑

i=1

h(ri,pi,Si), (1.2)

where

h(r,p,S) =
p2

2
− Z

r
+ V̄ + ξ(r)L · S. (1.3)

We write the single particle eigenstates and eigenvalues as

h|λ〉 = ǫλ|λ〉, (1.4)

where λ stands for the single particle quantum numbers (nℓjmj), and where ǫλ is indepen-

dent of mj , ǫλ = ǫnlj . The states |λ〉 form an orthonormal basis in the Hilbert space for a

single electron. The eigenstates of H0 +H2 are Slater determinants formed out of Z orbitals

|λ〉, and the corresponding energies are

E0+2 =
∑

λ

ǫλ. (1.5)

We will only be interested in the ground state configuration of our atom (Pb or Bi), so the

n and ℓ quantum numbers are the same for all orbitals λ, and the energy E0+2 depends

only on the j quantum numbers.

For example, in Pb with the 6p2 configuration, the two electrons can give three possible

pairs of j values, (j1, j2) = (3

2
, 3

2
), (3

2
, 1

2
), or (1

2
, 1

2
). Therefore the single level E0 ofH0 breaks

up into three levels E0+2, labeled by (j1, j2), when we turn on H2. As we know from spin-

orbit theory (Notes 23), the energy ǫnℓj is an increasing function of j, so the (j1, j2) are

sequenced as indicated in Fig. 1.

Finally, when we turn on H1, the individual Ji operators no longer commute with the

Hamiltonian, but J =
∑

i Ji does. Therefore we must now organize the energy eigenstates

according to the (J,MJ ) quantum numbers. In Pb, for example, the (3

2
, 3

2
) state splits into

J = 0 and J = 2 states. The states J = 3 and J = 1, which occur in 3

2
⊗ 3

2
, are not allowed

by the Pauli principle. Likewise, the (3

2
, 1

2
) level splits into J = 1 and J = 2 levels, because

3

2
⊗ 1

2
= 1⊕2. Here the Pauli principle causes no extra restriction, because j1 6= j2. Finally,
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2
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Fig. 1. Term diagram in jj-coupling for lead (Pb). Drawing is not to scale.

the (1

2
, 1

2
) gives only a J = 0 level. All these levels and their degeneracies (in parentheses)

are indicated in Fig. 1.

(a) For the case of bismuth (6p3 configuration), indicate the allowed (j1, j2, j3) terms and

their degeneracies when H2 is added to H0. Make sure the degeneracies add up to the

degeneracy of the 6p3 configuration. Indicate also the allowed J values contained in each

(j1, j2, j3) term. On the basis of the information given you can’t know how to order the

different J levels within a given (j1, j2, j3) term, but the ordering shown in Fig. 1 are correct

for Pb.

(b) The (3

2
, 3

2
, 1

2
) term contains a J = 3/2 component. Find the normalized states |JMJ 〉

in this component for MJ = 3

2
and MJ = 1

2
. Write your answers as linear combinations of

Slater determinants composed of orbitals |λ〉; the Slater determinant will be identified by the

(j,mj) quantum numbers of the last three orbitals, since the orbitals for the 80 core electrons

are fixed. To help the grader(s), identify these Slater determinants as |j1j2j3;mj1mj2mj3〉.

2. (30 points) Emission of radiation by a neutron in a magnetic field.

(a) A neutron is initially at rest in a magnetic field B0 = B0ẑ in a spin-up state. Let

M be the mass of the neutron. It emits a photon and drops into a spin-down state, and

simultaneously recoils. Let ∆E be the energy difference due to the spin flip. Using simple

conservation of energy and momentum, obtain a quadratic equation for the magnitude k
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of the wave vector k of the photon in terms of ∆E. Use nonrelativistic mechanics for the

neutron. It’s a little messy to solve this quadratic for k so don’t bother to do it, but do

solve for k in the limit M → ∞ (physically, this means ∆E ≪Mc2, a condition that would

hold for reasonable magnetic fields). This part of the problem is easy.

(b) Sometimes in modeling we break the electromagnetic field into two parts, a classical or

“external” or c-number field, and the quantized field. In the present case let B = B0 + B1,

where B0 = B0ẑ as in part (a) and where B1 is the quantized field,

B1(r) =

√

2πh̄c2

V

∑

λ

1√
ωk

[

i(k×ǫλ)aλe
ik·r − i(k×ǫ

∗
λ)a†λe

−ik·r
]

. (2.1)

This is essentially Eq. (39.20) of the Notes. Take the Hamiltonian for the entire system

(neutron plus external field plus quantized field) to be

H =
p2

2M
− µ · (B0 + B1(x)) +

∑

λ

h̄ωλ a
†
λaλ, (2.2)

where x is the neutron position and µ is its magnetic moment. For the convenience of the

grader(s), please write the magnetic moment in the form

µ = −µ0

S

h̄
, (2.3)

where µ0 > 0 is a constant with dimensions of magnetic moment that can be expressed in

terms of the neutron g-factor and the nuclear magneton.

Using first-order, time-dependent perturbation theory, find the differential transition

rate (dw/dΩ)µ where µ = 1, 2 or −1, 1 is the index of the polarization of the emitted photon

(not to be confused with the magnetic moment). When you get to the point of taking into

account conservation of energy, you may take M → ∞ as in part (a).

(c) An observer on the x-axis views the emitted radiation through a linear polarizer. In a

certain orientation of the polarizer the intensity of the radiation drops to zero. What is the

axis of the polarizer when this happens? Does the emitted radiation as viewed from this

direction have linear, elliptic, or circular polarization?

(d) Assuming we don’t care about the polarization of the emitted radiation, find an expres-

sion for the differential transition rate dw/dΩ. Integrate this to obtain the total transition

rate w.
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3. (40 points) We use natural units (h̄ = c = 1) in this problem.

Beta decay is the reaction

n→ p+ e− + ν̄, (3.1)

the decay of a neutron into a proton, an electron, and an antineutrino. The Feynman

diagram for this process is shown in Fig. 2.

n

p e ν̄

Fig. 2. Feynman diagram for β-decay.

In 1934 Fermi wrote down a field theory to explain β-decay. Since that time our under-

standing of weak interaction physics has become much more sophisticated (parity violation,

helicity of neutrinos, weak currents, three types of neutrinos, electroweak unification, W

and Z bosons, etc etc) but Fermi’s theory does explain the basic experimental facts about

β-decay (the energy spectrum of the emitted electron and other things) that were known

at that time. In addition, Fermi’s theory is accessible by methods developed in this course.

Fermi’s theory can be described by a field Hamiltonian,

H = H0n +H0p +H0e +H0ν +Hint, (3.2)

where each term with a 0 subscript is the Hamiltonian for a free spin-1

2
fermion (neutron,

proton, electron, neutrino), each with the general form

H0 =

∫

d3x : ψ†(x)(−iα · ∇ +mβ)ψ(x) :=
∑

ps

E(b†psbps + d†psdps), (3.3)

where H0, ψ, m, E, bps, dps etc all implicitly take a subscript i = n, e, p, ν to indicate the

type of particle. The notation is as in class and in the notes. The fermion field ψ has the

Fourier expansion,

ψ(x) =
1√
V

∑

ps

√

m

E

(

bpsupse
ip·x + d†psvpse

−ip·x
)

, (3.4)
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where V is the volume of the box and otherwise the notation is as in class.

As for the interaction Hamiltonian in Eq. (3.2), Fermi chose it to be the product of

four Fermion fields in order to take into account the 4-point vertex in Fig. 2. He also chose

a current-current type of interaction, since the electromagnetic interaction is of this type.

Fermi’s interaction Hamiltonian is

Hint = g

∫

d3x : (ψ̄pγ
µψn)(ψ̄eγµψν) : +h.c., (3.5)

where g is a constant, where all fields are evaluated at x and where h.c. means “Hermitian

conjugate.” By using this Hamiltonian to calculate the rate of neutron decay and comparing

to experiment one can get a value for the constant g (essentially, the Fermi constant).

(a) Explain why the Hermitian conjugate of a term such as ψ̄pγ
µψn is ψ̄nγ

µψp (it is not

completely obvious since we have ψ̄ instead of ψ†). This means that the Hermitian conjugate

term in the Hamiltonian can be written

g

∫

d3x : (ψ̄νγµψe)(ψ̄nγ
µψp) : . (3.6)

(b) Show that the interaction Hamiltonian connects the initial and final states in Fig. 2,

that is, the matrix element 〈f |Hint|i〉 is nonzero. For this it is sufficient to show that the

field part of the matrix element is nonzero. You don’t have to write out the matrix element

in all detail, you can be schematic, but indicate the important parts for the question at

hand. Notice that the interaction gives rise to 2 × 16 = 32 possible Feynman diagrams.

Show that the Feynman diagram for inverse β-decay,

p+ e→ n+ ν (3.7)

is one of them. Draw a Feynman diagram connecting the four particles and their antipar-

ticles that is not one of the 32.

(c) Inverse β-decay (3.7) takes place in the final stages of core collapse in a supernova

explosion. As the matter is compressed by gravity the top of the electron Fermi sea rises,

ultimately reaching relativistic energies (∼ 511 KeV) and beyond. When it reaches ∼ 1.3

MeV, the mass difference between the neutron and the proton, the electrons are energetic

enough to cause the reaction (3.7) to take place. Any extra electron energy goes mostly into

the energy of the neutrino. As the most energetic electrons are removed, their contribution

to the pressure is also eliminated, leading to further gravitational contraction. Simultane-

ously, protons are converted to neutrons and neutrinos are emitted. In this way a good part
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of the neutrons in a neutron star are created. The neutrinos from a supernova explosion

were actually observed in 1989.

We will use Fermi’s theory to compute the cross section for inverse beta decay. Before

beginning the quantum mechanics, it’s a good idea to practice a little with the conservation

laws. Working in the center of mass frame, write down an expression for the total energy Etot

of the system as a function of the initial electron 3-momentum pe = |pe|. The momentum

pe is a parameter of the problem and is fixed for the rest of the calculation; therefore so

is Etot. Now compute Etot as a function of the final neutrino 3-momentum pν = |pν |.
This final 3-momentum pν should be regarded as a variable, since we will be summing over

a collection of final states to get a cross section. Imagine solving for pν as a function of

Etot. Don’t actually do it, since it’s a little messy, but call the root obtained pf (for “final”

momentum). In the limit mν → 0, however, it’s easy to solve for pν as a function of Etot;

do this. The whole calculation is done in the center-of-mass frame.

(d) Find an expression for the matrix element 〈f |Hint|i〉 that is simplified as much as you

can make it without explicitly evaluating spinors or spin contractions. Work with box

normalization as in class and as reflected by the equations above.

(e) Now write out an expression for the differential cross section dσ/dΩ, where dΩ refers

to a cone of small solid angle in some direction, within which the final neutrino momentum

lies. Simplify this as much as you can without doing spin sums. You may express things

in terms of the momentum pf found in part (c) and other convenient quantities. Hint: the

incident flux can be defined as the number of electrons per unit volume in the initial state

times the relative velocities of the initial electron and proton.

(f) Now assume that the incident electron and proton are unpolarized, and that we do not

care about the spins of the outgoing neutron and neutrino. Write an expression for the

effective differential cross section in this case, and take the limit mν → 0. At the same time

you may assume that the proton and neutron are essentially nonrelativistic, so E ≈ m and

v ≪ 1 for these particles. This is appropriate for the astrophysical application discussed

above. Do the spin sums to get a practical formula for the effective dσ/dΩ.

(g) Integrate this to get a total cross-section.


