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The Zeeman Effect in Hydrogen

and Alkali Atoms†

1. Introduction

The Zeeman effect concerns the interaction of atomic systems with external magnetic fields. A

basic understanding of the Zeeman effect is needed for many aspects of modern research in atomic

physics. In addition, the Zeeman effect played an important historical role in the development of

quantum mechanics, leading to the discovery of spin, the g-factor of the electron, and the Thomas

precession. In these notes we treat the Zeeman effect in one-electron atoms.

2. Units and Orders of Magnitude

We will use atomic units, so that m = h̄ = e = 1. This means that c = 1/α ≈ 137, where α is

the fine structure constant. It also means that the Bohr magneton becomes

µB =
eh̄

2mc
=

1

2c
=
α

2
, (1)

while the magnetic moment of the electron becomes

µ = −g
e

2mc
S = −

1

c
S = −αS, (2)

where we approximate g ≈ 2 for the electron g factor. Thus, the energy of interaction of the electron

spin in a magnetic field is

−µ ·B = αB · S. (3)

We must also deal with magnetic fields in atomic units. A magnetic field of strength B = 1 in

atomic units is equivalent to B = B0 in ordinary Gaussian units, where B0 is the unique magnetic

field strength that can be constructed out of e, h̄ and m. That field is

B0 =
e

a20
=
m2e5

h̄4
= 1.72× 107 Gauss, (4)

where a0 is the Bohr radius (the unit of distance in atomic units). B0 is the strength of a mag-

netic field that is equal to the electrostatic field of the proton at the Bohr radius in the hydrogen

† Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/1920/221.html.
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atom (thus, it is also the atomic unit of electric field). Electric and magnetic fields have the same

dimensions in Gaussian units, although one is usually called statvolts/cm and the other Gauss;

see Appendix A. If an external field of strength B0 is applied to a hydrogen atom in the ground

state, the electron will feel a magnetic force that is of the order of α times the electric force, since

the velocity of the electron is v/c = α. If you want to apply a magnetic field so strong that the

magnetic force is equal to the Coulomb electric force from the nucleus, the field must have the

strength B0/α = 2.35 × 109 Gauss. Such fields are so strong that atoms in the ordinary sense

do not exist; the dynamics is dominated by magnetic forces at all distances larger than a Bohr

radius. At higher magnetic field strengths, new physics appears. For example, at the strength

B = B0/α
3 = 4.41× 1013 Gauss, the energy of the lowest Landau level is becoming relativistic.

For reference, the strongest steady magnetic fields that can be created in a laboratory are of

the order of 10 T or 105 Gauss. By using explosives or other means to compress magnetic flux,

fields of the order of 103 T or 107 Gauss can be created for a short period of time. In astrophysics,

much stronger magnetic fields arise. It is believed that at the surface of a neutron star there exist

magnetic fields of up to 1012 Gauss, and there is speculation about fields of up to 1015 Gauss in

“magnetars”. Because of these astrophysical applications, there has been some interest in recent

years in the exotic physics that arises at high field strengths. In these notes we will assume that the

external fields are steady state fields created in the laboratory, and hence have a maximum value of

about 105 Gauss or 10−2 atomic units.

3. The Hamiltonian and Neglected Terms

In atomic units, the Hamiltonian for the electron in a single-electron atom (hydrogen-like or

alkali) is

H =
1

2

(

p+ αA
)2

+ V (r) +HFS + αB · S, (5)

where the charge of the electron is q = −1, where V (r) is the central force potential (either Coulomb

for hydrogen or screened Coulomb for alkalis), and where HFS is the sum of the fine-structure

corrections presented in Eqs. (24.25). We assume a uniform magnetic field,

B = Bẑ, (6)

and we take the gauge

A =
1

2
B×r, (7)

which is Coulomb gauge so that ∇ ·A = 0. This implies

p ·A = A · p, (8)

so the cross terms in the expansion of the kinetic energy can be written in either order.

We expand the kinetic energy T in the Hamiltonian (5) into three terms,

T =
1

2

(

p+ αA
)2

=
p2

2
+ αp ·A+

α2

2
A2 = T1 + T2 + T3. (9)
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The cross term can also be written,

T2 =
α

2
p · (B×r) =

α

2
B · L, (10)

where L = r×p. The third term can also be written,

T3 =
α2

8
B2(x2 + y2). (11)

It looks like a potential (it is a function only of the particle coordinates).

We estimate the relative order of magnitude of the three terms in the kinetic energy by first

looking at the ratio,
T2
T1

∼
αBL

p2
∼ αB, (12)

where we use for a reference a state of hydrogen with quantum numbers that are of order unity,

so that p (the momentum of the electron in atomic units) and L (its angular momentum) are both

of order unity. Since we have decided that B (in atomic units) is no more than 10−2, this ratio is

about 10−4 maximum, and T2 ≪ T1. Similarly, we find that the ratio T3/T2 is of the same order of

magnitude, so T3 is much smaller in turn than T2.

The term T2 is of the same order of magnitude as the energy of interaction of the spin with the

magnetic field (the last term in Eq. (5)), and taken together these terms form what we shall call the

Zeeman Hamiltonian,

HZ =
α

2
B · (L+ 2S) =

α

2
B(Lz + 2Sz). (13)

The 2 multiplying the spin is really the g-factor of the electron, indicating that different kinds of

angular momentum produce magnetic moments in different proportions.

The Zeeman Hamiltonian HZ is of the same order of magnitude as T2, which by our assumptions

is at most about 10−4 in atomic units. This coincidentally is the same order of magnitude as the

fine structure terms HFS, at least in hydrogen, where they are of order α2. Of course by decreasing

the strength of the magnetic field we can make HZ ≪ HFS. Similarly, by going to excited states,

where fine structure effects are smaller than in the ground state, we can make HZ ≫ HFS. In the

following we will analyze both limits in the comparison between HZ and HFS. As for the term T3,

it is much smaller than any of the other terms, and we drop it. The result is the Hamiltonian that

we will use for our analysis of the Zeeman effect,

H =
p2

2
+ V (r) +HFS +HZ , (14)

where HZ is given by Eq. (13).

4. Case I. HZ Dominant, HFS Negligible

The first case we shall consider is one in which HZ is so much larger than HFS that HFS can be

neglected altogether. This might require unrealistically large magnetic fields by laboratory standards

(it depends on the quantum numbers), but it provides a useful reference for later work.
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To analyze this case we take the unperturbed Hamiltonian and the perturbation to be

H0 =
p2

2
+ V (r), (15)

H1 = HZ . (16)

The unperturbed Hamiltonian is the nonrelativistic, electrostatic model of the atom, but we include

the spin degrees of freedom in the wave functions. Thus, for hydrogen the energies are En = −1/2n2

with degeneracies 2n2, and for the alkalis the energies are Enℓ with degeneracies 2(2ℓ+ 1).

Thus we must think about degenerate perturbation theory. As usual, a good choice of basis of

unperturbed eigenstates inside the degenerate, unperturbed eigenspaces may simplify the calculation

(see Sec. 24.5). The obvious choices of unperturbed eigenbases are the uncoupled basis, {|nℓmℓms〉},

and the coupled basis, {|nℓjmj〉}. To see which is better, we make a table indicating which operators

H1 = HZ commutes with. We only list the z-component of various angular momentum operators in

the table, because the perturbation breaks the full rotational symmetry of the unperturbed system,

and can only be invariant with respect to rotations about the z-axis.

Lz L2 Sz S2 Jz J2

Y Y Y Y Y N

Table 1. The table indicates whether HZ commutes with the given angular momentum operator (Y = yes, N = no).

We find that all the operators in the list commute with HZ , except J
2 = L2+2L ·S+S2, which

fails because L · S contains the x- and y-components of L and S, which do not commute with Lz

or Sz . The table makes it clear that the uncoupled basis is better for the perturbation calculation,

since the operators (L2, Lz, Sz) of the complete set that define the uncoupled basis all commute

with HZ . Thus, in this basis, the matrix of HZ (either the 2n2 × 2n2 matrix for hydrogen or the

2(2ℓ + 1) × 2(2ℓ + 1) matrix for the alkalis) in the unperturbed eigenspace is completely diagonal.

As in the fine structure calculation of Notes 24, we escape having to diagonalize any matrices when

doing degenerate perturbation theory.

Therefore the energy shifts are given by

∆E =
α

2
B〈nℓmℓms|(Lz + 2Sz)|nℓmℓms〉 =

α

2
B(mℓ + 2ms) = (µBB)(mℓ + 2ms). (17)

In the final expression we have used Eq. (1), which makes the answer valid in both atomic and

ordinary units, since µBB has dimensions of energy. The results are displayed in Fig. 1a for the 2s

set of states and in Fig. 1b for the 2p set of states of hydrogen. We see that the 2-fold degeneracy

of the 2s states is completely lifted by the perturbation, while the 6-fold degeneracy of the 2p set of

states is only partially lifted, with five equally spaced energy levels in the presence of the magnetic

field, one of which is 2-fold degenerate.
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2s (2)

+1

−1

|0, 1
2
〉

|0,− 1

2
〉

Fig. 1a. Strong field Zeeman splitting in 2s level of hy-
drogen. The number in parentheses is the degeneracy of
the unperturbed state. The energy shifts ∆E are mea-
sured in units of µBB. The quantum numbers in the kets
are |mℓms〉, the other quantum numbers n = 2 and ℓ = 0
being understood.

2p (6)

+2

+1

0

−1

−2

|1, 1
2
〉

|0, 1
2
〉

| − 1, 1
2
〉, |1,− 1

2
〉

|0,− 1

2
〉

| − 1,− 1

2
〉

Fig. 1b. Same as Fig. 1a, except for the 2p level of hy-
drogen, which is 6-fold degenerate. The perturbed level
∆E = 0 is 2-fold degenerate. Quantum numbers n = 2
and ℓ = 1 are understood.

Actually, Figs. 1 are valid for any s or p set of states, either in hydrogen or in an alkali. In

hydrogen, however, notice that there is a further degeneracy, because the states ∆E/µBB = ±1

in the 2s set of states are degenerate with the ∆E/µBB = ±1 states of the 2p set. Altogether,

of the 8 degenerate states of the the n = 2 level of hydrogen in the unperturbed system, there are

two nondegenerate levels (∆E/µBB = ±2) after the perturbation is turned on, and three 2-fold

degenerate levels (∆E/µBB = 0,±1).

5. Case II. HZ ≫ HSO, HSO not Negligible

Now we consider the case that HZ is much larger than the fine structure terms HFS, as in Sec. 4,

but not so large that those corrections can be neglected. Thus we will take the new unperturbed

Hamiltonian to be

H0 =
p2

2m
+ V (r) +HZ , (18)

with HFS as a perturbation. Notice that this H0 is the entire Hamiltonian of Sec. 4.

More precisely, we will take H1 to be the spin-orbit term only, and ignore the relativistic kinetic

energy and Darwin corrections. This is not realistic, because all three fine structure terms are of

the same order of magnitude, but we do it for simplicity. As for the spin-orbit term, we write

f(r) =
α2

2

1

r

dV

dr
, (19)

so that

H1 = HSO = f(r)L · S. (20)

In the following we concentrate mainly on hydrogen, with a few comments about the alkalis.

Some of the eigenstates of H0 are degenerate, as we have seen in Sec. 4, so we must think about

degenerate perturbation theory. We can only use the uncoupled basis, since the coupled basis is not

an eigenbasis of H0. Thus we must look at the matrix elements

〈nℓmℓms|HSO|nℓ
′m′

ℓm
′
s〉, (21)
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where we put primes to cover the degenerate eigenspaces of H0. For example, in the n = 2 levels of

hydrogen, we found in Sec. 4 that there were three 2-fold degenerate levels of H0 (see Figs. 1a and

1b). However, we see right away that [HSO, L
2] = 0, so the prime on ℓ is not necessary, and in fact

we can carry out the perturbation analysis in subspaces of given ℓ separately. This is what we must

do anyway in the case of the alkalis, where there is no degeneracy in ℓ in the unperturbed system.

In the case of the n = 2 levels of hydrogen, we see that we have only one 2-fold degeneracy, that

between the |nℓmℓms〉 = |2, 1,−1, 1
2
〉 and |2, 1, 1,− 1

2
〉 states. This makes one 2 × 2 matrix. Let us

look at the off-diagonal element,

〈2, 1,−1, 1
2
|f(r)L · S|2, 1, 1,− 1

2
〉, (22)

in which we use the identity,

L · S =
1

2
(L+S− + L−S+) + LzSz. (23)

To be nonvanishing, the operator in the middle of the matrix element (22) must connect states with

∆mℓ = 2, but in fact that operator permits only ∆mℓ = 0 or ±1. Therefore the off-diagonal matrix

element (22) vanishes, and, for the n = 2 levels of hydrogen, we can use nondegenerate perturbation

theory. Once again, there are no matrices to diagonalize.

Therefore to get the energy shifts we need only look at the diagonal matrix elements,

∆E = 〈nℓmℓms|f(r)L · S|nℓmℓms〉 = mℓms〈nℓmℓms|f(r)|nℓmℓms〉, (24)

where we have used Eq. (23). The spin kets cancel each other in the final matrix element, which

turns into a purely orbital matrix element of the type we saw previously in the treatment of the fine

structure. See Sec. 24.9. We have

〈nℓmℓms|f(r)|nℓmℓms〉 = 〈nℓmℓ|f(r)|nℓmℓ〉 =
α2

2
〈nℓ0|

1

r3
|nℓ0〉, (25)

where in the last step we have specialized to hydrogen. We use the expectation value (24.47), which

is only valid for ℓ 6= 0, to find

∆E =
α2

2n3

mℓms

ℓ(ℓ+ 1

2
)(ℓ + 1)

=
α2

48
mℓms, (26)

in the 2p levels of hydrogen. As for the 2s levels, for them L = 0 (that is, the operator L vanishes

on the 2s-subspace), so ∆E = 0.

6. Case III: HZ ≪ HFS

The final case we shall examine is the weak field limit, in which HZ ≪ HFS. Thus we take the

unperturbed Hamiltonian and perturbation to be

H0 =
p2

2m
+ V (r) +HFS, (27)

H1 = HZ = µBB(Lz + 2Sz). (28)
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In the case of hydrogen, one should also consider the Lamb shift for a realistic treatment. For

example, in the n = 2 levels of hydrogen, the Lamb shift is about 10 times smaller than the fine

structure energy shifts, indicating that we really should question how the Lamb shift compares to

the Zeeman term which is also (by our assumptions) much smaller than the fine structure term. For

simplicity, however, we will ignore the Lamb shift in the following and work with Eqs. (27) and (28).

The unperturbed energies are Enj for hydrogen or Enℓj for the alkalis, and the unperturbed

eigenstates are members of the coupled basis |nℓjmj〉. There is no option of using the uncoupled

basis, which is not an eigenbasis of H0. The degeneracies are 2j + 1 in the case of the alkalis, and

more than this in hydrogen because of the degeneracy between different ℓ values. For example, the

eight n = 2 states of hydrogen consist of two levels, each 4-fold degenerate (see Fig. 24.2). Thus we

must think about degenerate perturbation theory.

In hydrogen the matrix elements we need have the form

〈nℓ′jm′
j |HZ |nℓjmj〉, (29)

where on the left we omit the primes on n and j since they define the unperturbed energy level

Enj , but put primes on the other two indices. In the case of the alkalis we do not need the prime

on ℓ, since the unperturbed energies are Enℓj . Actually, we do not need the prime on ℓ in the case

of hydrogen, either, since [L2, HZ ] = 0. Nor for that matter do we need the prime on mj , since

[Jz, HZ ] = 0, and once again we escape from having to diagonalize any matrices. The energy shifts

are

∆E = 〈nℓjmj|µBB(Lz + 2Sz)|nℓjmj〉. (30)

We write Lz + 2Sz = Jz + Sz, so that this becomes

∆E = µBB
[

mj + 〈nℓjmj |Sz|nℓjmj〉
]

. (31)

The final matrix element of Sz is not entirely trivial to evaluate in a reasonably elegant manner.

A technique that has been found to do this involves some results in angular momentum theory. We

now make a digression to discuss these results, before returning to apply them to the weak field

Zeeman effect.

7. The Projection Theorem

In this section we adopt the general notation for a standard angular momentum basis, |γjm〉,

which was used in Notes 13. Compared to the notation used in Sec. 6, the correspondences are

γ → nℓ,

j → j,

m→ mj.

(32)

We begin with an identity due to Dirac. We let V be any vector operator. Then we have the

identity,

[J2, [J2,V]] = h̄2[2(J2V +VJ2)− 4(V · J)J]. (33)
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This identity can be proved by working with the definition (19.20). The proof will be left as an

exercise. See Prob. 1.

We sandwich both sides of Dirac’s identity (33) between the states 〈γ′jm′| and |γjm〉, in which

the j values are the same on both sides but the other indices are allowed to be different. We let

X = [J2,V], so that the left hand side of Eq. (33) is [J2,X] and its matrix element is

〈γ′jm′|J2X−XJ2|γjm〉 = j(j + 1)h̄2〈γ′jm′|X−X|γjm〉 = 0. (34)

Therefore the matrix element of the right hand side of Eq. (33) between the same states vanishes,

or,

2〈γ′jm′|J2V+VJ2|γjm〉 = 4j(j + 1)h̄2〈γ′jm′|V|γjm〉 = 4〈γ′jm′|(V · J)J|γjm〉. (35)

Rearranging, we have

〈γ′jm′|V|γjm〉 =
1

j(j + 1)h̄2
〈γ′jm′|(V · J)J|γjm〉, (36)

which is the projection theorem. It is useful in several applications in atomic physics. It has gener-

alizations in which the j values on the two sides of the matrix element are allowed to be distinct,

but this simpler version is all we shall need for the application we shall consider.

V

J

Fig. 2. Geometrical meaning of the projection theorem.

The geometrical meaning of the projection theorem can be seen in Fig. 2. If we think of J and

V as classical vectors, then the projection of V onto the direction J is given by

(V · J)J

J2
. (37)

On the other hand, the quantum projection theorem (36) states that the matrix elements of a vector

operator V on a subspace of a given j are the same as the matrix elements of the projection (37),

with the denominator J2 reinterpreted as j(j+1)h̄2. The projection theorem can also be seen as an

example of the Wigner-Eckart theorem, in which the reduced matrix element is explicitly evaluated.
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8. The Weak Field Zeeman Effect

We now return to the matrix element of Sz in Eq. (31), which we need for the energy shifts

in the weak field Zeeman effect. We use the projection theorem with the identifications (32), and

we also identify V with S. In this application of the projection theorem the states are the same on

both sides of the matrix element, so we do not need the primes seen in Eq. (36). Thus we have

〈nℓjmj |Sz|nℓjmj〉 =
1

j(j + 1)
〈nℓjmj |(S · J)Jz |nℓjmj〉, (38)

where we have taken the z-component and reverted to atomic units. The operator Jz brings out the

quantum number mj when acting on the ket, while the operator S · J can be put into a more useful

form by expanding L2 = (J− S)2. This gives

S · J =
1

2
[J2 + S2 − L2]. (39)

Altogether, the matrix element becomes

〈nℓjmj|Sz |nℓjmj〉 = mj
j(j + 1) + s(s+ 1)− ℓ(ℓ+ 1)

2j(j + 1)
, (40)

and the energy shift (31) becomes

∆E = gL(µBB)mj , (41)

where

gL = 1 +
j(j + 1) + s(s+ 1)− ℓ(ℓ+ 1)

2j(j + 1)
. (42)

The dimensionless number gL is called the Landé g-factor.

It might seem surprising that the energy shifts should be proportional to mj , for while it is true

the Jz = Lz+Sz, the orbital and spin angular momentum do not contribute equally to the magnetic

moment, due to the different g-factors (g = 1 for orbital angular momentum, g = 2 for electron

spin, hence the expression Lz + 2Sz in the Zeeman Hamiltonian). That is, the angular momentum

operator is J = L+S, while the magnetic moment operator µ is proportional to L+2S. Thus, µ is

not proportional to J. In Notes 14 it was pointed out that in classical electrodynamics, the angular

momentum and magnetic moment of a system are in general not proportional, and the question was

left open why they should be so for a particle such as the nucleus of an atom. We see here that in

atomic systems, too, the magnetic moment and angular momentum are not proportional. But the

energy shifts (41) are the same as if the magnetic moment of the atom (orbital plus spin) were given

by

µ = −gLµB
J

h̄
, (43)

a generalization of Eq. 14.12 with q = −e).

The reason for this is that all vector operators are proportional to any given vector operator

on a single irreducible subspace under rotations. See Prob. 19.2(a). The angular momentum J is
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a convenient reference vector operator, so all vector operators, including L + 2S, are proportional

to J on a single irreducible subspace. In the limit of weak magnetic field, the Zeeman Hamiltonian

does not mix irreducible subspaces, that is, it only involves a single set of states |nℓjmj〉 with the

same n, ℓ and j but with different mj , so the energy shifts are proportional to mj . For stronger

fields, for example, one strong enough to overwhelm the fine structure splitting as in Sec. 5, the

dependence of the energy levels on the magnetic quantum numbers is more complicated. The same

would happen in a nucleus if the magnetic field were strong enough to mix more than one eigenspace

of the nuclear Hamiltonian, although that would require extraordinarily large magnetic fields by

ordinary standards.

Problems

1. The projection theorem is useful in evaluating matrix elements for the Zeeman effect and for the

hyperfine structure of hydrogen.

Show that if A is a vector operator, then

[J2, [J2,A]] = 2h̄2(AJ2 + J2A)− 4h̄2(A · J)J. (44)

Then use this to show that

j(j + 1)h̄2〈γ′jm′|A|γjm〉 = 〈γ′jm′|(A · J)J|γjm〉, (45)

where the notation of Notes 13 is used.

2. In this problem we aim to do a realistic calculation of the effect of magnetic fields on the n = 2

states of hydrogen. (For simplicity we will set Z = 1 throughout.) We will allow the magnetic field

to take on any value, so that we will not assume that the Zeeman term is necessarily small or large

in comparison to the fine structure terms. (We will, however, ignore the Lamb shift.)

In these notes we have studied various limiting cases. In Sec. 8 we studied the case that B is

so weak that the spin-orbit term dominates the Zeeman term. There we found (see Eq. (41)) that

the energy shifts were

∆E = gµBBmj , (46)

where g is the Landé g-factor,

g = 1 +
j(j + 1) + s(s+ 1)− ℓ(ℓ+ 1)

2j(j + 1)
. (47)

Next, when B is so strong that the spin-orbit term can be neglected (Sec. 4), we found Eq. (17) for

the energy shifts. Some books (e.g., Sakurai) do similar calculations, but they ignore the Darwin

and relativistic kinetic energy corrections, which is not realistic because they are of the same order

of magnitude as the spin-orbit term.
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Consider therefore the Hamiltonian,

H = H0 +H1, (48)

where

H1 = HRKE +HSO +HD +HZ . (49)

See Eqs. (24.25), (24.26) and (13) for the definitions of these various terms. Take the magnetic field

to point along the z-axis, B = Bẑ. The term HZ is proportional to the applied field B, which is a

parameter of the perturbing Hamiltonian. You are to evaluate the corrections to the energy levels

due to this perturbation, as a function of B, using first-order perturbation theory. To simplify the

notation, I suggest that you use atomic units throughout. Also, I recommend that you introduce

the dimensionless variable x to represent the strength of the magnetic field,

x =
B

B1

, (50)

where

B1 =
e7m2

h̄5c
= αB0, (51)

where B0 is defined by Eq. (4). This definition is useful for the present problem, because it makes

x = 1 approximately the value for which the Zeeman term is comparable to the fine structure term.

0.00 0.05 0.10 0.15 0.20
-0.2

-0.1

0.0

0.1

0.2

x = B/B1

2p3/2

2s1/2, 2p1/2

∆E/α2

Fig. 3. Graph of solutions to Prob. 2. The Zeeman energy shift ∆E is measured relative to the n = 2 level of hydrogen
in the electrostatic model, which is −1/2 · 22 in atomic units. The fine structure energy shifts at zero field strength are

−(5/128)α2 for the 2s1/2 and 2p1/2 levels, where α is the fine structure constant, and −(1/128)α2 for the 2p3/2 levels.
The model ignores the Lamb shift, which is why the 2s1/2 and 2p1/2 levels are degenerate in the figure at zero field

strength. Including the Lamb shift would modify the picture slightly.
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(a) Out of the list of operators, L2, Lx, Ly, Lz, S
2, Sx, Sy, Sz , J

2, Jx, Jy, Jz, π, indicate which

commute with H0 and which commute with the entire Hamiltonian H . Use this information to

choose a convenient basis in the 8-dimensional subspace of the n = 2 degenerate energy levels of H0,

for which the perturbing Hamiltonian will be as diagonal as possible.

(b) Let ∆E be the difference between the true energy levels of H (including the perturbation) and

the 8-fold degenerate level E2 = −1/8 = −1/(2 · 22) of H0. Find all eight levels as a function of x

in atomic units.

(c) Expand these results out for small x, and show that they agree with Eq. (46). Also expand the

results for large x, and show that the results agree with Eq. (17).

See Fig. 3, a plot of the answers. The figure reveals a typical behavior of energy levels in various

versions of the Zeeman effect. Notice that energy levels cross as the parameter (in this case, the

magnetic field strength) is varied. Notice also that the fine structure splitting is overwhelmed by

the Zeeman energy shifts at relatively small values of the parameter x. We might have expected

this to occur around x ≈ 1, based on the scalings we have introduced, but the quantum numbers

introduce additional dimensionless factors that reduce the value to something closer to x ≈ 0.03,

which corresponds to a magnetic field of about 4KG = 0.4T.

3. This is another approach to the proof of the projection theorem, one which uses the Wigner-Eckart

theorem. In the following we let A and B be vector operators, which for simplicity we assume to be

Hermitian. This means that A†
i = Ai, B

†
i = Bi, for all three Cartesian components of A and B.

(a) Since A is a vector operator, the Wigner-Eckart theorem says

〈γ′j′m′|Aq|γjm〉 = 〈γ′j′||A||γj〉〈j′m′|j1mq〉, (52)

where Aq = êq ·A. See Sec. 19.12 for the spherical basis êq. Now let f be a scalar operator. Then

since fA is another vector operator, we must have

〈γ′j′m′|fAq|γjm〉 = 〈γ′j′||(fA)||γj〉〈j′m′|j1mq〉, (53)

where 〈γ′j′||(fA)||γj〉 just means the reduced matrix element for the vector operator fA. Also, since

f is a scalar, we have

〈γ′j′m′|f |γjm〉 = δm′m δj′j 〈γ
′j||f ||γj〉, (54)

where the Clebsch-Gordan coefficient is trivial since k = q = 0.

Show that

〈γ′j′||(fA)||γj〉 =
∑

Γ

〈γ′j′||f ||Γj′〉〈Γj′||A||γj〉. (55)

(b) For the special case A = J, work out an explicit formula for the reduced matrix element,

〈γ′j′||J ||γj〉. Hint: Take the q = 0 component, J0 = Jz, and use Eq. (18.72) to evaluate the

Clebsch-Gordan coefficient explicitly. Then solve for the reduced matrix element.
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(c) Since A and B are vector operators, A · B is a scalar operator. Express the reduced matrix

element of the scalar A ·B in terms of the reduced matrix elements of A and B. Hint: Note that

A ·B =
∑

q

(A · eq)(e
∗
q ·B) =

∑

q

AqB
†
q , (56)

where we use Eq. (19.48).

(d) Now show that

〈γ′j′m′|(A · J)J|γjm〉 (57)

vanishes unless j = j′. In the case j = j′, work out the reduced matrix element in terms of the

reduced matrix element of A. Use this to show that

〈γ′jm′|(A · J)J|γjm〉 = j(j + 1)h̄2〈γ′jm′|A|γjm〉, (58)

which is the projection theorem.

4. The wave function of spin- 1
2
particle can be considered to be a 2-component column spinor,

ψ =

(

ψ+

ψ−

)

, (59)

as in Eq. (18.14). Then the Hermitian conjugate wave function can be seen as a 2-component row

spinor,

ψ† = (ψ∗
+, ψ

∗
−). (60)

In this notation, the normalization integral can be written

∫

d3xψ†(x)ψ(x) = 1. (61)

(a) The magnetic moment operator of an electron is given by Eq. (14.16), and that of a neutron by

Eq. (14.24). Find the expectation value of the magnetic moment operator for an electron and for a

neutron, when the wave function satisfies ψ−(x) = 0, that is, the particle is polarized as “spin up.”

Express your answer in terms of g-factors and other physical constants.

In this case the expectation value of the magnetic moment vector has only a z-component. We

consider this z-component to be “the magnetic moment” (that is, a scalar value) of the electron or

neutron.

(b) Iron has a density of 7.87 gm/cm3, and an atomic weight of 55.8. Assuming each iron atom has

an average of one electron aligned in the z-direction, find the magnetization M. (The magnetization

is defined as the dipole moment per unit volume in both SI and Gaussian units. See Appendix A. The

Gaussian unit of magnetization is Gauss, and the SI unit is J/Tesla-m3, which is also an Ampere/m.

One Ampere/m is the same magnetization as as 10−3Gauss.)
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A uniformly magnetized sphere has a magnetic field given by

B =
8π

3
M, (62)

in Gaussian units. Compute the magnetic field strength inside a uniformly magnetized sphere of

iron, under the assumptions of the previous paragraph.

Iron actually has four 3d electrons whose spins can be aligned. If you multiply your answer by

4, you will get a value close to but somewhat larger than the practical saturation field strength in

an iron core magnet. This number is important to experimentalists, for example, particle physicists

who must bend particle beams with magnetic fields. To achieve much higher field strengths requires

superconductors, which produce them by means of massive currents, without the aid of any substance

of high permeability as a core.

(c) A neutron star has a density of 4 × 1014 gm/cm3. Find the magnetic field inside a uniformly

magnetized sphere of such material, assuming each neutron is aligned with the magnetic field.

5. The Landé g-factor gives the proportionality between µ and J on a single irreducible subspace of

the atomic Hilbert space with quantum numbers ℓ and j. Given that the magnetic moment operator

µ is proportional to L+2S, it would be logical that if ℓ = 0 then the Landé g-factor should become

equal to the electron g-factor, whereas if ℓ → ∞, then it should become equal to the g-factor for

orbital motion, which is 1. Show that this is true.


