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Notes 7

The WKB Method†

1. Introduction

The WKB method is important both as a practical means of approximating solutions to the

Schrödinger equation and as a conceptual framework for understanding the classical limit of quantum

mechanics. The initials stand for Wentzel, Kramers and Brillouin, who first applied the method to

the Schrödinger equation in the 1920’s. The WKB approximation is also called the semiclassical

or quasiclassical approximation. The basic idea behind the method can be applied to any kind of

wave (in optics, acoustics, etc): it is to expand the solution of the wave equation in the ratio of the

wavelength to the scale length of the environment in which the wave propagates, when that ratio is

small. In quantum mechanics, this is equivalent to treating h̄ formally as a small parameter. The

method itself antedates quantum mechanics by many years, and was used by Liouville and Green in

the early nineteenth century.

Planck’s constant h̄ has dimensions of action, so its value depends on the units chosen, and it

does not make sense to say that h̄ is “small.” However, typical mechanical problems have quantities

with dimensions of action that appear in them, for example, an angular momentum, a linear mo-

mentum times a distance, etc., and if h̄ is small in comparison to these then it makes sense to treat

h̄ formally as a small parameter. This would normally be the case for macroscopic systems, which

are well described by classical mechanics. Thus the classical limit can be thought of as one in which

h̄ is small in comparison to typical actions of the system.

It is obvious that there must be some subtlety in the classical limit of quantum mechanics, since

the physical interpretations of the two theories are so different. For example, quantum mechanics

makes physical predictions that are fundamentally statistical, while statistics only enters into clas-

sical mechanics if there is a lack of complete information about initial conditions. Moreover there

are quantum phenomena, such as interference and tunneling, that have no classical analog. We will

see as we proceed how WKB theory represents these characteristic features of quantum mechanics

around a framework constructed out of classical mechanics.

† Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/1920/221.html.
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2. The WKB Ansatz

As mentioned the WKB method can be applied to any wave system in which the wavelength

is small compared to typical scale lengths of the system, so we have a wide choice of systems with

which to illustrate the method. We will begin with the time-independent Schrödnger equation

in three dimensions for a particle moving in a potential V (x), because the multidimensional case

makes certain aspects of the classical limit more vivid. Another interesting case would be the time-

dependent Schrödinger equation, for which see Sec. 4. This section offers an intuitive presentation of

the WKB ansatz, which is a description of how the wave function depends on h̄, and the beginnings

of the classical picture associated with it.

The time-independent Schrödinger equation that we will use is

− h̄2

2m
∇2ψ(x) + V (x)ψ(x) = Eψ(x), (1)

where E is an energy eigenvalue. The quantum Hamiltonian is

H =
p2

2m
+ V (x), (2)

a formula that also serves as the classical Hamiltonian, of course with different interpretation of the

symbols x and p.

In the special case that the potential is constant, V = V0 = const., solutions exist in the form

of plane waves,

ψ(x) = AeiS(x)/h̄, (3)

where A is the constant amplitude, and where

S = p · x. (4)

The vector p is a momentum, and in fact the wave function (3) is an eigenfunction of momentum

as well as energy, with eigenvalues related by

E =
p2

2m
+ V0. (5)

We assume that E ≥ V0, so that p is real.

The wave (3) is called a plane wave because the wave fronts, that is, the surfaces of constant

phase, are planes. These are sketched in Fig. 1. The momentum p = ∇S is orthogonal to the wave

fronts; it is a constant (independent of position). Two wave successive wave fronts with a phase

difference of 2π, that is, with ∆S = 2πh̄, are separated by the wavelength λ, which is related to the

momentum by the de Broglie formula,

λ =
2πh̄

|∇S| =
2πh̄

|p| . (6)
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p = ∇S(x)

S = S0 = const

S = S0 − 2πh̄

S = S0 − 4πh̄

Fig. 1. Plane waves are so called because the surfaces of
constant phase are planes. The momentum eigenvalue is
p = ∇S, where S/h̄ is the phase.

p = ∇S(x)

S = S0 = const

S = S0 − 2πh̄

S = S0 − 4πh̄

Fig. 2. In a slowly varying potential, the wave fronts
are surfaces that curve with the same scale length as the
potential. The vector p = ∇S is a “local momentum,”
that is, a function of position.

Now let us consider the case of a slowly varying potential V . Let L be some characteristic scale

length of the potential. When we say that V is slowly varying, we mean that V does not change

much on the scale of a wavelength, that is,

λ≪ L. (7)

Then it is plausible that the wave fronts, that is, the surfaces of constant phase of the solution ψ(x)

of the Schrödinger equation (1), will be curved surfaces such as illustrated in Fig. 2, and that these

surfaces will deviate significantly from a plane on the same scale length L as the potential. We can

still write the phase of the wave as S(x)/h̄, but the function S no longer has the plane wave form

(4). As for the amplitude A of the wave, it is constant in a constant potential, so it is reasonable to

guess that in a slowly varying potential it is also slowly varying, that is, that it has the same scale

length L as the potential. We still write the wave function as

ψ(x) = A(x)eiS(x)/h̄, (8)

but now A and S are functions of x to be determined.

Some exactly solvable one-dimensional problems reinforce our confidence in the validity of

Eq. (8) and the assumptions surrounding it. See, for example, the one-dimensional eigenfunctions

of the harmonic oscillator illustrated in Figs. 3 and 4. The wave function is largely concentrated

between the classical turning points for the given energy E, namely, ±(2E/mω2)1/2. We can take

L as the distance between these turning points. The wave function ψ(x) looks like a cosine wave (a

sum of two terms of the form (8)) with a slowly varying amplitude and wave length.
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Fig. 3. Normalized harmonic oscillator eigenfunction for

n = 20. Distance x is measured in units of (h̄/mω)1/2.
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Fig. 4. Same as Fig. 3, except n = 40.

Returning to the three-dimensional case, it is clear from Fig. 2 that the solution ψ(x) looks like

a plane wave if we examine it in a region of space small compared to L. Let x0 be a fixed point of

space, and let x = x0 + ξ, where |ξ| ≪ L. Then when we expand the wave function (8) about x0,

we can simply evaluate the amplitude A at x0, since it does not change much on the scale of ξ, but

we must include the first correction term in the phase. Thus we have

ψ(x0 + ξ) ≈ A(x0)e
iS(x0)/h̄eiξ·∇S/h̄, (9)

where the first two factors constitute a constant amplitude and phase, and the third shows that ψ

has locally the form of a plane wave with momentum

p = p(x) = ∇S(x). (10)

Unlike the case of a plane wave, p is now a function of position, so it is not constant and ψ(x)

is no longer an eigenfunction of momentum. (The wave function ψ(x) is still an eigenfunction of

energy, however, with energy E.) The local momentum p(x) is orthogonal to the wave fronts, as

illustrated in Fig. 2. Since displacement by the wave length λ in a direction orthogonal to the wave

fronts must result in a phase advance of 2π, the de Broglie relation (6) still holds, but now λ is also

a function of position. Notice that the assumption (7) can be stated in another form,

h̄

|p|L ≪ 1, (11)

showing the dimensionless ratio of a mechanical action to h̄.

The momentum field (10) gives us the beginning of a classical interpretation of the solution (8)

of the Schrödinger equation. That is, we imagine that the region of space occupied by the wave (8)
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is also occupied by a swarm of classical particles, such that the particle at position x has momentum

p(x) = ∇S(x). This swarm defines in effect a classical ensemble out of which the probabilistic

features of quantum mechanics will be represented. The momentum field p(x) satisfies

∇×p(x) = 0, (12)

and

S(x) = S(x0) +

∫

x

x0

p(x′) · dx′, (13)

where in the latter integral x and x0 are any two points and the path of integration is any path

between them (we ignore topological complications in the application of Stokes’ theorem). Integrals

of the form (13) are well known in classical mechanics, where the function S is called Hamilton’s

principal function. It is also called simply the action, and it does have dimensions of action, but

several different quantities in classical mechanics are called the action and one should be aware of

which is meant when using this term. It was because of the interpretation of the function S as the

classical action that we split off a factor of h̄ in the phase of the quantum wave function in Eqs. (3)

and (8).

The notion of the momentum field p(x) leads to further questions. Obviously the momentum

of a classical particle moving in the potential V (x) would change as the particle moves on its orbit.

Suppose at t = 0 we consider the particle at position x0 which has momentum p0 = p(x0). Then

(x0,p0) forms a complete set of initial conditions for a classical orbit. If we follow this classical orbit

for some amount of time, the particle moves to a new position x1. Is the momentum of the particle

following this orbit the same as the value of the momentum field p(x), evaluated at x = x1? The

answer is yes, at least within the framework of the WKB approximation.

The momentum field p(x) can be associated with a velocity field

v(x) =
p(x)

m
, (14)

and an energy field

E(x) =
p(x)2

2m
+ V (x), (15)

so that the classical particle at x has momentum p(x), velocity v(x) and energy E(x). All of these

follow from the phase S(x) of the quantum wave function. If that wave function is a solution of the

Schrödinger equation (1), then what is the relation between the energy field E(x) and the energy

eigenvalue E? The answer is that they are equal, that is, the energy field E(x) that we have defined

in Eq. (15) is actually a constant (independent of x).

It turns out that the ensemble of classical particles also has a density, which perhaps not

surprisingly is given by

ρ(x) = |ψ(x)|2 = A(x)2, (16)

where we use the WKB ansatz (8). That is, the density of particles in the classical ensemble is the

same as the quantum probability density (at least this is true in the WKB approximation). More
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precisely, for bound energy eigenfunctions, which are normalizable, ρ(x) is the probability density;

if the eigenfunction is a part of the continuous spectrum then ρ(x) is not normalizable, but it can

still be interpreted in the WKB approximation as a density of classical particles associated with the

wave.

Given that the particle at position x has velocity v, the motion of the particles under the

classical equations of motion gives rise to a particle current,

J(x) = ρ(x)v(x), (17)

which is similar to the mass current in a fluid. This current becomes known once the amplitude

A(x) and phase S(x) of the quantum wave function are known. As it turns out, it is a consequence

of the Schrödinger equation (1) that this current is divergence-free,

∇ · J(x) = 0, (18)

at least in the WKB approximation. This means that as the classical particles of the ensemble follow

their orbits according to the classical equations of motion, the number of particles entering some

volume of space equals the number leaving, so that the density ρ(x) remains constant.

This concludes an overview of some of the features of the classical picture associated with the

WKB approximation to the solution of the time-dependent Schrödinger equation (1). We will now

develop this solution more carefully.

3. Equations for S and A

To obtain equations for S and A we can take the WKB ansatz (8) and substitute it into the

Schrödinger equation (1), neglecting higher order terms in h̄. A more systematic and cleaner way

of doing this, and one that in principle allows us to compute all the higher order corrections in h̄, is

the following.

First we bring the amplitude up into the exponent by writing the WKB ansatz as

ψ(x) = exp
{ i

h̄
[S(x)− ih̄ lnA(x)]

}

. (19)

From this we see that the amplitude (or, rather, −i lnA) is in a sense the O(h̄) correction to the

action S. We extend this expansion to all orders, writing

ψ(x) = exp
[ i

h̄
W (x)

]

, (20)

where

W (x) =W0(x) + h̄W1(x) + h̄2W2(x) + . . . , (21)

and where

W0(x) = S(x), W1(x) = −i lnA(x). (22)
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With this approach we are exploring the classical limit of quantum mechanics by expanding the

logarithm of the wave function in powers of h̄, in which the leading term is O(1/h̄). It will not do to

expand the wave function itself in powers of h̄, since ψ simply oscillates ever more rapidly as h̄→ 0,

and does not approach a limit.

The WKB ansatz (8) looks like just the decomposition of the complex wave function ψ into

its amplitude and phase, in the sense of complex numbers, with the additional information that

the phase behaves as 1/h̄ as h̄ → 0. It would be that, and the WKB ansatz would be exact, if we

required that A and S be real. But in that interpretation both A and S would have a dependence on

h̄. By expanding W in powers of h̄ as we have done in Eq. (21), we have in effect redefined S and A

in terms of the zeroth and first order terms of W , so that now S and A have no h̄ dependence. This

means that there are now higher order corrections (W2, etc), so that the WKB anstaz (8) is only an

approximation. Also, there is no longer any requirement that S and A be real. Indeed, as we shall

see in one-dimensional problems, S takes on complex values in the classically forbidden region.

We now substitute Eq. (20) into the Schrödinger equation (1), and express the latter in terms

of W instead of ψ. After a little algebra, we find

1

2m
(∇W )2 − ih̄

2m
∇2W + V = E. (23)

No approximations have been made yet, and this is exactly equivalent to the Schrödinger equation

(1), although the shift from ψ to its logarithm has made the Schrödinger equation nonlinear. Next

we expand W as in Eq. (21), substitute into Eq. (23), and collect terms order by order. At order

h̄0, we find
1

2m
(∇W0)

2 + V (x) = E, (24)

or
1

2m
(∇S)2 + V (x) = E. (25)

This is the well known Hamilton-Jacobi equation of classical mechanics. See Eq. (B.135). Notice

that with p(x) = ∇S the Hamilton-Jacobi equation confirms the remark made about Eq. (15), that

the energy field E(x) is constant and equal to the energy eigenvalue. All the particles of the classical

ensemble associated with the energy eigenfunction (20) have the same energy, which is the energy

eigenvalue of the quantum problem.

At order h̄1, we find
1

m
∇W0 · ∇W1 −

i

2m
∇2W0 = 0, (26)

or by Eq. (22),
1

m
∇S · ∇ lnA+

1

2m
∇2S = 0. (27)

We multiply this by 2A2 and use v(x) = p(x)/m = ∇S/m, which gives

v · (2A∇A) +A2∇ · v = 0, (28)
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or

∇ · (A2v) = 0. (29)

We call this equation (in its various forms) the amplitude transport equation.

If the amplitude A and action S are real, as they are in classically allowed regions, then the

amplitude transport equation is the WKB approximation to the continuity equation (5.55) for the

probability density and current, which of course is exact. We see this by neglecting terms W2 etc.

in the expansion (21), so that

ρ(x) = |ψ(x)|2 ≈ A(x)2, (30)

and

J(x) = Reψ∗
(

− ih̄∇
m

)

ψ ≈ A(x)2v. (31)

With these substitutions, the amplitude transport equation becomes ∇ · J = 0. In comparison to

the continuity equation (5.55), the term ∂ρ/∂t = 0, since ρ is independent of time.

4. Other Types of Problems

In Eq. (1) we chose the time-independent Schrödinger equation for a kinetic-plus-potential

problem in order to illustrate WKB theory with a specific example. In this section we outline what

would happen for other types of problems.

For example, the Hamiltonian might incorporate a magnetic field, or otherwise differ from the

simple kinetic-plus-potential form (1). In such cases the Hamilton-Jacobi equation can be written

H(x,∇S) = E, (32)

where H is the classical Hamiltonian. Again, this means that the particles of the classical ensemble

all have the same energy E (the eigenvalue of the Schrödinger equation).

Under such generalizations we define the velocity field by

v =
∂H

∂p
(x,∇S), (33)

where again H is the classical Hamiltonian. This is one of Hamilton’s classical equations of motion,

ẋ = ∂H/∂p, except that the derivative of the Hamiltonian is evaluated at p = ∇S. For example, in

the case of a charged particle moving in a magnetic field, we have

v(x) =
1

m

[

p(x) − q

c
A(x)

]

. (34)

It is interesting that in problems with magnetic fields, the particle velocity v is not proportional to

p, so the motion of the particles is not orthogonal to the wave fronts.

Under such generalizations the amplitude transport equation can be written

∇ ·
(

A2v(x)
)

= 0, (35)
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and again it is a version of the continuity equation, indicating that the classical ensemble is stationary

if the particle at position x moves with velocity v(x).

We also comment briefly on the time-dependent WKB problem, working with the time-depen-

dent Schrödinger equation,

− h̄2

2m
∇2ψ + V (x, t)ψ = ih̄

∂ψ

∂t
, (36)

where the potential is allowed to be a function of time. Let the WKB ansatz be

ψ(x, t) = A(x, t)eiS(x,t)/h̄. (37)

Then at order h̄0 we find
1

2m
(∇S)2 + V (x, t) +

∂S

∂t
= 0, (38)

which is also well known in classical mechanics as the time-dependent version of the Hamilton-Jacobi

equation. See Eq. (B.133). It can also be written in the form,

H(x,∇S, t) + ∂S

∂t
= 0, (39)

where H(x,p, t) is the classical Hamiltonian. The solution S(x, t) of the time-dependent Hamilton-

Jacobi equation is known as Hamilton’s principal function, and is given in terms of a line integral

(usually taken along classical orbits),

S(x, t) =

∫

p · dx−H dt =

∫

Ldt, (40)

where L is the classical Lagrangian. See Sec. B.25 for a discussion of Hamilton’s principal function in

classical mechanics. We will see it appear again when we study the Feynman path integral. At order

h̄1, the time-dependent problem gives rise to a time-dependent version of the amplitude transport

equation,
∂ρ

∂t
+∇ · J = 0, (41)

which again is a version of the continuity equation for quantum probability, with an interpretation

in terms of a classical ensemble. In this case, the classical ensemble, whose particles evolve according

to classical mechanics, reproduce the time-dependent probability density of the quantum problem,

modulo errors of order h̄2 that result from the truncation of the series (21).

5. Historical and Other Comments on the Hamilton-Jacobi Equation

A version of the Hamilton-Jacobi equation first appeared in Hamilton’s researches in the 1830’s

into variational formulations of mechanics and their relation to optics. Hamilton discovered the form

of the classical equations of motion that now bears his name, and he realized that their complete

solution was equivalent to solving a certain partial differential equation, Eq. (39). These ideas

were generalized by Jacobi a few years later, who developed methods for solving Eq. (32), what we
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now call the time-independent Hamilton-Jacobi equation. Jacobi used these methods to solve some

nontrivial problems in classical mechanics.

Renewed interest in the Hamilton-Jacobi equation arose in the period of the old quantum theory

(1900-1925), after Sommerfeld’s and Wilson’s analysis of Bohr’s quantization condition, which is

expressed in terms of action integrals like (13). The old quantum theory was a collection of rules that

were incomplete, logically unclear, and of limited applicability, but which gave excellent agreement

with experiment in a number of important cases such as the specific heat of solids and the spectrum

of hydrogen, including its fine structure. As a result, the period 1911-1925 saw a heightened interest

in the formal structure of classical mechanics, in the hope that it would elucidate the difficulties

of the old quantum theory. These efforts were summarized in Born’s book The Mechanics of the

Atom, published just about the time that Heisenberg’s and Schrödinger’s (modern) quantum theory

emerged. After this, interest in classical mechanics, at least in physics circles, fell to almost zero.

In more recent times, since the advent of computers and the discovery of chaos, classical me-

chanics has enjoyed another revival, partly stimulated also by developments in mathematics such

as the KAM (Kolmogorov-Arnold-Moser) theorem. It is now recognized that the Hamilton-Jacobi

equation has no global solutions in the case of chaotic motion, and that this has an impact on the

morphology and other features of the quantum wave function.

In the language of classical mechanics, the solution S of the Hamilton-Jacobi equation is the

generator of the canonical transformation that trivializes the classical equations of motion. The

existence of this transformation requires that the system have a sufficient number of commuting

constants of motion (the classical analog of a complete set of commuting observables). The constants

of motion are conveniently expressed as functions of the actions, themselves constants of motion that

generate periodic (and commuting) flows in phase space. The variables canonically conjugate to the

actions are certain angles. Such matters are discussed in advanced courses in classical mechanics.

Because of problems with chaos and other issues, the Hamilton-Jacobi equation and the other

equations of WKB theory are harder to solve in the multidimensional case, so the most common

applications of WKB theory are in one dimension. We now turn to that case.

6. One-Dimensional WKB Problems

We consider now the one-dimensional Schrödinger equation,

− h̄2

2m
ψ′′(x) + V (x)ψ(x) = Eψ(x), (42)

in which we use the one-dimensional WKB ansatz,

ψ(x) = A(x)eiS(x)/h̄. (43)

The Hamilton-Jacobi equation is the one-dimensional version of Eq. (25),

1

2m

(dS

dx

)2

+ V (x) = E, (44)
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and the amplitude transport equation is the one-dimensional version of Eq. (29),

d

dx

(

A2 dS

dx

)

= 0. (45)

We solve the Hamilton-Jacobi equation (44) algebraically for dS/dx, obtaining

dS

dx
= p(x) = ±

√

2m[E − V (x)]. (46)

The ± sign means that there are actually two WKB solutions, with actions that differ by a sign.

The general solution is a linear combination of the two solutions. Integrating Eq. (46), we have

S(x) =

∫ x

x0

p(x′) dx′. (47)

Changing the lower limit of integration merely adds a constant to S, which by Eq. (43) just changes

the overall phase of the wave function. We will worry about phases later, and for now we set x0 to

anything convenient.

The amplitude transport equation (45) is also easily solved. We find

A(x) =
const
√

p(x)
, (48)

where as we see by Eq. (43) the constant of integration just establishes the normalization and phase

of the wave function. For now we set this constant to anything convenient.

To proceed it is convenient to get rid of the ± sign in Eq. (46) by committing to a definite branch

of the square root function. How we do this depends on whether E > V (x) (a classically allowed

region, where the kinetic energy is positive and the momentum real) or E < V (x) (a classically

forbidden region, where the kinetic energy is negative and the momentum imaginary). We will

adopt the following definitions,

p(x) =

{√

2m[E − V (x)], E > V (x),

i
√

2m[V (x) − E], E < V (x).
(49)

Then we will define S(x) by Eq. (47), and say that the solutions of the Hamilton-Jacobi equation

(44) are S(x) and −S(x), with associated momentum functions p(x) and −p(x). The momentum is

purely imaginary in the classically forbidden region.

The classical meaning of the functions p(x) and A(x) may be seen in Fig. 5, which illustrates a

portion of the x-axis in which there is a classical turning point xtp (a point where E = V (x)), with

the classically allowed region to the left and the classically forbidden region to the right (upper part

of figure). The energy E is the eigenvalue of the Schrödinger equation (42). The lower part of the

figure is a phase space plot, showing the classical orbit of energy E. The orbit is also the contour

line of the classical Hamiltonian, H(x, p) = E, because the classical motion conserves energy and

therefore traces out this line. A given x value in the classically allowed region corresponds to two
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H(x, p) = E

x0 x xtp

(

x, p(x)
)

(

x,−p(x)
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Fig. 5. Illustration of functions p(x) and S(x) in classi-
cally allowed region.

V (x)

E

p

ρcl(x)

x

x

x

xℓ xr

xℓ xr

x x+ dx

Fig. 6. Meaning of classical probability density ρ(x) for
a one-dimensional oscillator (the Morse oscillator).

momentum values, ±p(x), where the vertical line of constant x intersects the orbit, representing

the particle passing x going one direction, and then passing it again going back. These are the two

momentum branches corresponding to a given x value. Thus, the upper branch (the upper part of

the orbit in phase space) is the graph of the function p = p(x). By Eq. (47), the action S(x) with

lower limit x0 is the area between the x-axis and the upper part of the orbit and between the limits

x0 and x, as in the shaded part of the figure.

We spoke previously of a swarm or ensemble of classical particles that represents the WKB

wave, such that the momentum of the particle at position x is p(x) (in three dimensions). From

Fig. 5, we see that in the one-dimensional case there are really two swarms, one with particles going

to the right and one with them going to the left. If the positions and momenta of these particles

are plotted in phase space, then they lie on the line H = E, that is, they all have the same classical

energy. This, in fact, is the meaning of the Hamilton-Jacobi equation (44).

The amplitude solution (48) also has a classical interpretation. As explained in Sec. 3, A(x)2 is

the same as the quantum probability density ρ(x) = |ψ(x)|2 in the WKB approximation (neglecting

O(h̄2) and higher terms in the expansion (21)), and it has an interpretation in terms of the density

of the ensemble or swarm of classical particles. In the one-dimensional case, this classical density
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can be understood from another standpoint, which we now discuss. The density in question is only

normalizable in the case of an oscillator, so we consider that case, and refer to Fig. 6.

The top of the figure is the potential energy curve for the Morse oscillator, which is often used to

model the stretching of molecular bonds. The potential rises rapidly to the left, corresponding to the

strong repulsion of atoms that are brought close together, and gradually to the right, representing

the attractive force between atoms as they are pulled apart, a force that dies off slowly as the distance

increases. In the middle is a potential well, in which the oscillations represent molecular vibrations.

We use the Morse potential here because it is a strongly nonlinear oscillator that presents features

not present in the harmonic oscillator.

The classical particle oscillates between the left and right turning points xℓ and xr with a period

T . In each period, it passes through a small interval [x, x + dx] twice, once going to the right and

once to the left. We define a classical probability density ρcl(x) by requiring the probability of the

particle to lie in the interval [x, x + dx] to be the fraction of the total period T that the particle

spends in this interval. That is, we define

ρcl(x) dx =
2

T
dt, (50)

where dt is the time it takes to pass through the interval once. Thus we have

ρcl(x) =
2

T

1

v(x)
=

2m

T

1

p(x)
. (51)

According to Eq. (48), this probability density is equal to A(x)2, to within a constant. The function

ρcl(x) is plotted in the lower part of Fig. 6. It is smallest where the classical particle is moving most

rapidly, and conversely.

The density ρcl(x) diverges at the turning points, where the velocity goes to zero. One can show

that ρcl(x) goes like d−1/2 when d, the distance from a turning point, is small. Then, since A(x)

goes like the square root of ρcl(x), it goes like d
−1/4 and also diverges near the turning point. Thus,

the nominal prediction of WKB theory is that the wave function should diverge at turning points.

The exact wave function does not actually diverge there, as can be seen from exact solutions such as

those in Figs. 3 and 4, but it does become large there. In effect, the classical singularity is smoothed

out by the uncertainty principle, which also causes some of the wave function to spill over into the

classically forbidden region. We shall discuss the behavior of the wave function near turning points

more carefully below.

According to Eq. (50), the swarm or ensemble of particles representing the WKB wave can be

thought of as a large number of particles uniformly distributed in time around the orbit. These

are illustrated by the dots placed at equal time intervals along the phase space orbit in the center

diagram in Fig. 6.

By its construction, ρcl(x) is normalized to unity. In the case of a scattering problem, the

motion is not periodic and T → ∞, so the density of classical particles cannot be normalized. It

is still meaningful, however, to think of particles uniformly distributed along the orbit in time, in
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which case we have a particle density ρcl(x) that is proportional to 1/p(x), as in the case of an

oscillator. It is not surprising that ρcl cannot be normalized in this case, since the quantum wave

function cannot be normalized, either.

7. Classically Allowed Region to the Left

Let us now examine the case in which we have a classically allowed region to the left of a turning

point, with a classically forbidden region on the right, as illustrated in Fig. 7. The turning point is

denoted xr (since it is to the right of the classically allowed region). We are only sketching part of

the x-axis in this diagram, and we make no assumptions about what the potential does to the left or

the right of the diagram. For example, to the left it may rise again, creating a potential well, or just

asymptote to zero, making a scattering problem. Or, to the right, it may go down again, creating a

barrier the particle can tunnel through.

x
xr

E

V (x)

I II

Fig. 7. A 1-dimensional potential V (x) rising to the right. Point xr is a classical turning point.

First we treat region I, the classically allowed region, where x < xr and E > V (x). Here p(x)

is real and positive as defined by Eq. (49). In this region we define S by

S(x) =

∫ x

xr

p(x′) dx′, (52)

which is the same as Eq. (47) except that now we are agreeing to measure the action from the turning

point xr . This is merely a matter of convenience, but it means that S(x) is real and negative in

region I, and increasing to the right (since dS/dx = p(x) > 0). Taking S(x) and −S(x) as the two

solutions of the Hamilton-Jacobi equation, the WKB solution is a general linear combination of two

waves,

ψI(x) = cr
eiS(x)/h̄+iπ/4

√

p(x)
+ cℓ

e−iS(x)/h̄−iπ/4

√

p(x)
, (53)

where cr and cℓ are two generally complex constants and where we have introduced phase shifts

of ±π/4 in the two terms for later convenience. Properly speaking, we should have used −p(x) in

the denominator of the second term, but we have absorbed the factor of
√
−1 = i into the second
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constant. The first term is a wave traveling to the right (since dS/dx > 0), and the second, a wave

traveling to the left; this is the meaning of the subscripts on the constants cr and cℓ. The general

solution is a linear combination of such waves.

Next we treat region II, the classically forbidden region, where x > xr and E < V (x). Here

p(x) is purely imaginary, as given by Eq. (49). In order to work with real quantities, we define

K(x) =

∫ x

xr

|p(x′)| dx′ =
∫ x

xr

√

2m[V (x′)− E] dx′, (54)

and we take S(x) = iK(x). Again, the lower limit xr is the classical turning point. In region II

K(x) is real, positive, and increasing to the right. We also write the amplitude in the form,

A(x) =
1

√

|p(x)|
, (55)

so that A(x) is real and positive, absorbing any phases into the constants. Thus, the general WKB

solution in region II is

ψII(x) = cg
eK(x)/h̄

√

|p(x)|
+ cd

e−K(x)/h̄

√

|p(x)|
, (56)

where cg and cd are a new pair of complex constants. The first term is a wave that is growing

exponentially as we move to the right, while the second is damping exponentially to the right, which

explains the subscripts on cg and cd. (It is necessary to say, “to the right,” because a wave that is

growing to the right is damping to the left, and vice versa.)

We now have two solutions, Eqs. (53) and (56), in regions I and II respectively, each with two

constants. The two pairs of constants cannot be independent, since the general solution to the

Schrödinger equation (42) can only have two arbitrary constants overall. Therefore there must be

a way of determining cg and cd, given cr and cℓ, and vice versa. The rules for doing this are called

connection rules, and they amount to connecting the two WKB solutions through the turning point

region that separates the classical allowed and classically forbidden regions.

Unfortunately, neither WKB solution (53) nor (56) is valid in the immediate neighborhood of

the turning point, as shown by the divergence of the amplitude A(x). This divergence represents a

breakdown of the WKB approximation, which was based on the assumption (7), where we interpret

λ as the local de Broglie wavelength,

λ =
2πh̄

p(x)
. (57)

But near the turning point, p(x) → 0, λ→ ∞, and the condition (7) is violated. Therefore, to find

the connection between the coefficients (cr, cℓ) and (cg, cd) we cannot simply extend the two WKB

solutions up to one another at the turning point.

Instead, we require a separate solution, or at least an approximate one, that is valid in the

immediate neighborhood of the turning point. One can show that the WKB solutions (53) and (56)

are valid except in a small region around the turning point, unless the slope V ′(x0) of the potential

at the turning point itself should be too small.
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Let us approximate the potential in the neighborhood of the turning point by a straight line,

V (x) ≈ V (xr) + (x− xr)V
′(xr), (58)

valid when x− xr is small. Then using E = V (xr), the Schrödinger equation (42) becomes

− h̄2

2m

d2ψ

dx2
+ V ′(xr)(x − xr)ψ = 0. (59)

To clean this up, we introduce a shifted and scaled variable z by the substitution,

x = xr + az, (60)

where a is a positive constant chosen to absorb all the physical constants in Eq. (59). We see that

the variable z is zero at the turning point, negative in the classically allowed region, and positive in

the classically forbidden region. The nicest choice for a is

a =
( h̄2

2mV ′(xr)

)1/3

, (61)

which causes the Schrödinger equation to become

d2ψ

dz2
− zψ = 0. (62)

Variable z is dimensionless, and a has dimensions of length.

Equation (62) is Airy’s differential equation, whose two linearly independent solutions are the

functions Ai(z) and Bi(z). These functions are discussed in standard references on special functions

of mathematical physics, such as Abramowitz and Stegun, Handbook of Mathematical Functions or

Gradshteyn and Ryzhik Table of Integrals, Series, and Products. These two are currently in print,

and Abramowitz and Stegun is conveniently available on line.

It helps to have some physical model in mind when studying the mathematical properties of

the Ai and Bi functions. For this purpose, we notice that a potential V (x) that is linear in x occurs

in the problem of a charged particle in a uniform electric field, where V (x) = qE0x, or of a massive

particle in a uniform gravitational field, where V (x) = mgx. Therefore, with appropriate scalings

of variables as in Eq. (60), the Ai and Bi functions are the (exact) solutions of the Schrödinger

equations for these two problems, as well as the approximate solutions for generic potentials near

turning points.

The Ai and Bi functions are plotted in Figs. 8 and 9, respectively. The Ai function is the solution

of Airy’s differential equation (62) that decays exponentially as z → ∞, and therefore represents

the physically allowable solution for a particle in the uniform gravitational field (with zero total

energy, since the classical turning point is at z = 0). As seen in Fig. 8, this function is oscillatory

for z < 0, with the wavelength and amplitude of the oscillations becoming smaller as z increases in

the negative direction, corresponding to the increasing velocity or momentum of the particle falling

in the gravitational field. The exponential damping of the function Ai(z) for z > 0 corresponds to
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Fig. 8. The function Ai(z).
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Fig. 9. The function Bi(z).

tunnelling into the classically forbidden region. Finally, the function Ai(z) shows the characteristic

behavior of the wave function at a turning point; the wave function has a large maximum near the

turning point, which is a smoothed version of the classical singularity in the probability density. As

for the Bi function, it blows up exponentially in the region z > 0, and so is nonphysical for particles

in gravitational fields; but we must retain this function for the general WKB problem. For z < 0,

the function Bi(z) oscillates like the Ai function, but 90◦ out of phase.

Altogether, the general solution of the Schrödinger equation (42) in the neighborhood of a

turning point has the form,

ψtp(x) = caAi(z) + cb Bi(z), (63)

where ca and cb are a new pair of constants, and x and z are related by Eq. (60). We must now

connect this solution with the solution ψI(x) to the left, and ψII(x) to the right.

First, working to the left, we invoke the asymptotic forms for the Ai and Bi functions for large

negative z,

Ai(z) =
1√

π (−z)1/4 cosα(z), z ≪ 0, (64a)

Bi(z) =
1√

π (−z)1/4 sinα(z), z ≪ 0, (64b)

where

α(z) = −2

3
(−z)3/2 + π

4
. (65)

Notice that −z is positive in this region. Thus, we can write the wave function at the left of the

turning point region in the form,

ψtp(x) =
1

2
√
π (−z)1/4

[

(ca − icb)e
iα(z) + (ca + icb)e

−iα(z)
]

. (66)
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Compare this to the WKB solution in the classically allowed region, Eq. (53), which we write in the

form,

ψI(x) =
1

√

p(x)

[

cre
iϕ(x) + cℓe

−iϕ(x)
]

, (67)

where

ϕ(x) =
S(x)

h̄
+
π

4
. (68)

Equations (66) and (67) must represent the same function. Furthermore, since the waves trav-

elling to the left and right are linearly independent, the left and right travelling waves in the two

equations must independently be equal. To show that this is true and to find the connections be-

tween the coefficients (cr, cℓ) and (ca, cb), we first approximate the momentum function p(x) near

the turning point according to Eq. (58),

p(x) =
√

2m[E − V (x)] =
√

−2mV ′(xr)(x − xr) =
h̄

a
(−z)1/2, (69)

where we use Eqs. (60) and (61). This shows that the amplitude factors in Eqs. (66) and (67) are

proportional, as they should be. Next, we integrate p(x) to find the action,

S(x)

h̄
=

1

h̄

∫ x

x0

p(x′) dx′ =

∫ z

0

(−z′)1/2 dz′ = −2

3
(−z)3/2, (70)

which shows that α(z) = ϕ(x). Thus, the phases in Eqs. (66) and (67) are identical. Now we can

read off the necessary relations between the coefficients, which are

1

2
√
π
(ca − icb) =

√

a

h̄
cr,

1

2
√
π
(ca + icb) =

√

a

h̄
cℓ. (71)

This completes the connection between the classically allowed region and the turning point region.

To connect to the right, that is, between the turning point region and the classically forbidden

region, we invoke the asymptotic forms of the Ai and Bi functions for large positive z,

Ai(z) =
1

2
√
π z1/4

e−β(z), z ≫ 0, (72a)

Bi(z) =
1√
π z1/4

e+β(z), z ≫ 0, (72b)

where

β(z) =
2

3
z3/2. (73)

Thus, the wave function to the right of the turning point region has the form,

ψtp(x) =
1

2
√
πz1/4

[

cae
−β(z) + 2cbe

+β(z)
]

, (74)
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whereas the WKB solution in the classically forbidden region, Eq. (56), has the form,

ψII =
1

√

|p(x)|
[

cge
κ(x) + cde

−κ(x)
]

. (75)

where

κ(x) =
1

h̄
K(x). (76)

As before, Eqs. (74) and (75) must represent the same function. That the amplitudes are

proportional is shown as before, for close to (but to the right of) the turning point we have

|p(x)| =
√

2mV ′(x0)(x − x0) =
h̄

a
z1/2. (77)

As for the action integral, we have

κ(x) =
1

h̄

∫ x

x0

|p(x′)| dx′ =
∫ z

0

z′1/2 dz′ =
2

3
z3/2 = β(z). (78)

Therefore again we can read off the relations between the coefficients, which are

ca
2
√
π
=

√

a

h̄
cd,

cb√
π
=

√

a

h̄
cg. (79)

Finally, we can eliminate (ca, cb) between Eqs. (71) and (79), and find the desired connection

rules between the coefficients (cr, cℓ) in the classically allowed region I, and the coefficients (cg, cd)

in the classically forbidden region II.

8. The Connection Rules

We now summarize the connection rules, first for the case of the classically allowed region to

the left of the turning point. This is the case analyzed in Sec. 7. The potential is sketched in Fig. 7,

with turning point xr .

In region I, the classically allowed region where x < xr and E > V (x), p(x) is real and positive

and is given by Eq. (49). The action S is given by Eq. (52), which we now write with a slight change

of notation,

S(x, xr) =

∫ x

xr

p(x′) dx′, (80)

indicating both limits of the integral. The action S(x, xr) is real, negative, and increasing to the

right in region I. The wave function (53) is now written as

ψI(x) =
1

√

p(x)

(

cr e
i[S(x,xr)/h̄+π/4] + cℓ e

−i[S(x,xr)/h̄+π/4]
)

, (81)
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In region II, the classically forbidden region where x > xr and E < V (x), p(x) is purely

imaginary and is given by Eq. (49). Note that

p(x) = i|p(x)| (82)

in this region. The tunneling action is defined by

K(x, xr) =

∫ x

xr

|p(x′)| dx′, (83)

which differs from Eq. (54) in that we now specify explicitly the lower limit of integration. In region

II K(x, xr) is real, positive, and increasing to the right. The wave function in this region is now

written as

ψII(x) =
1

√

|p(x)|

(

cg e
K(x,xr)/h̄ + cd e

−K(x,xr)/h̄
)

. (84)

The connections between the coefficients in regions I and II are given by

(

cg

cd

)

=

(

i −i
1/2 1/2

)(

cr

cℓ

)

, (85)

or
(

cr

cℓ

)

=

(−i/2 1

i/2 1

)(

cg

cd

)

. (86)

Next we consider the case of the a turning point separating a classically forbidden region (III)

to the left, and a classically allowed region (IV) to the right, as illustrated in Fig. 10. The turning

point is xℓ, which is not to be confused with the turning point xr in Fig. 7. The analysis of this case

is similar to what we did in Sec. 7, so we shall skip all details and simply quote the results.

x

E

V (x)

IV
xℓIII

Fig. 10. A 1-dimensional potential V (x) falling to the right. Point xℓ is a classical turning point.

In classically forbidden region III, we have x < xℓ and E < V (x), function p(x) is given by

Eq. (49) and is pure imaginary, and we define

K(x, xℓ) =

∫ x

xℓ

|p(x′)| dx′, (87)
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which is real, negative, and increasing to the right. The WKB wave in this region is

ψIII(x) =
1

√

|p(x)|

(

cg e
K(x,xℓ)/h̄ + cd e

−K(x,xℓ)/h̄
)

, (88)

where cg and cd are the coefficients of the waves growing and damping to the right, respectively.

In classically allowed region IV, we have x > xℓ and E > V (x), function p(x) is given by

Eq. (49) and is real and positive, and we define

S(x, xℓ) =

∫ x

xℓ

p(x′) dx′, (89)

which is real, positive, and increasing to the right. As above, we have explicitly indicated the lower

limit of integration xℓ (different from that in Eq. (80)). The WKB wave function in this region is

ψIV(x) =
1

√

p(x)

(

cr e
i[S(x,xℓ)/h̄−π/4] + cℓ e

−i[S(x,xℓ)/h̄−π/4]
)

, (90)

where cr and cℓ are the coefficients of waves travelling to the right and left, respectively. Notice

that the phases e±iπ/4 have been introduced with the opposite sign in comparison to Eq. (81); this

is more convenient for matching the asymptotic forms of the Airy functions in the turning point

regions.

The connections between the coefficients in regions III and IV is given by

(

cg

cd

)

=

(

1/2 1/2

−i +i

)(

cr

cℓ

)

, (91)

or
(

cr

cℓ

)

=

(

1 i/2

1 −i/2

)(

cg

cd

)

. (92)

The principal limitation of these formulas is that they cannot be used when two turning points

are too close together, for example, when the energy is too close to the top of a potential barrier.

The latter case is important in practice, and can be handled by extensions of the WKB method that

are beyond the scope of this course.

9. A Scattering Problem

As a first example of the connection rules, let us consider a one-dimensional scattering problem

in which a particle of energy E comes in from the left, encounters an impenetrable potential barrier,

and reflects back to the left. As sketched in Fig. 11, the potential V (x) approaches zero as x→ −∞
and goes to ∞ as x→ +∞. The particle cannot penetrate the barrier, so all particles launched from

the left reflect and go back to the left. The orbit in phase space is illustrated in Fig. 12.
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E

x

V (x)

xr

incident

reflected

I II

Fig. 11. Particle scattering from an impenetrable bar-
rier. Point xr is the turning point at energy E. Regions
I and II are the classically allowed and forbidden regions,
respectively.

p

x

xr

H = E

I II

Fig. 12. Phase space plot for potential in Fig. 11. Arrows
show direction of motion on orbit H = E.

To solve the Schrödinger equation by WKB theory, we observe that the boundary conditions

require that the wave function go to zero Region II, so the coefficient of the growing term cg in this

region must be zero. Let us set cd = 1 for the coefficient of the damping term in this region, which

amounts to a normalization of the wave function overall. Then applying the connection rule (86),

we find the coefficients of the right- and left-travelling waves in the classically allowed Region I,

(

cr

cℓ

)

=

(− i
2 1

+ i
2 1

)(

0

1

)

=

(

1

1

)

. (93)

Then Eq. (81) gives the wave function in Region I,

ψI(x) =
1

√

p(x)

(

ei[S(x,xr)/h̄+π/4] + e−i[S(x,xr)/h̄+π/4]
)

=
2

√

p(x)
cos

[S(x, xr)

h̄
+
π

4

]

. (94)

The wave function is an energy eigenfunction of positive energy, in the continuous part of the

spectrum. It is nondegenerate, as expected from the fact that ψ → 0 as x → +∞. See Sec. 6.2.

It is also real, as expected on the basis of time-reversal invariance. (More precisely, time-reversal

invariance requires that the wave function be proportional to a real wave function; in this case, the

proportionality factor is real. See Sec. 6.3.)

Another way to write the solution is

ψI(x) =
eiπ/4
√

p(x)

(

eiS(x,xr)/h̄ + r e−iS(x,xr)/h̄
)

, (95)

where we define r as the reflection amplitude. For this problem the reflection amplitude is a phase

factor,

r = e−iπ/2 = −i. (96)

A useful way to visualize the reflection amplitude r is to imagine that as the classical particles

move along their orbits, they accumulate an action given by

S(t) =

∫ t

0

p(t′)
dx(t′)

dt′
dt′. (97)
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If we let the initial time t = 0 be the time when the particle reaches the turning point x = xr, then

S(t) = S(x) on the upper branch of the orbit, when t < 0, and S(t) = −S(x) on the lower branch

of the orbit, where t > 0. The function S(t) is a monotonically increasing function for all t, since

when p > 0, dx/dt > 0, and when p < 0, dx/dt < 0. The upper branch is also the incident wave,

while the lower branch is the reflected wave.

Then S(t)/h̄ is the phase of the incident wave in Eq. (95) up to the turning point region,

whereupon the phase actually loses meaning since the wave there is no longer of WKB form. After

the particle emerges from the turning point region, however, the WKB form becomes valid again,

but now the phase is S(t)/h̄− π/2. That is, it is as if the particle has suffered a phase shift of −π/2
on passing through the turning point. This phase shift is also the reflection amplitude, as we have

defined it. This is an example of a general rule, that a WKB wave suffers a phase shift of −π/2 on

passing through a turning point.

A turning point is an example of a caustic, which is a generalization of the concept of a focus.

When light passes through a focus of a lens, it also suffers a phase shift, but it is −π instead of

−π/2, since the focus involves a two dimensional family of rays.

The one-dimensional version of the probability flux is

J = Re
[

ψ∗
(

− i

mh̄

d

dx

)

ψ
]

. (98)

If ψ is a solution of the time-dependent Schrödinger equation, then the one-dimensional version of

the continuity equation is
∂ρ

∂t
+
∂J

∂x
= 0. (99)

But if ψ is an energy eigenfunction, then ∂ρ/∂t = 0, so J is independent of x.

The incident and reflected waves are the two terms in the WKB solution (95). Each of these is

separately a solution of the Schrödinger equation in the WKB approximation, up to the turning point

region where the WKB form breaks down and the waves become strongly coupled with one another.

Therefore we can compute the flux for both the incident and reflected waves up to the turning point

region, and the values must be independent of x. The easiest place to do the computation is in the

asymptotic region x→ −∞, where the particles are free and the local momentum p(x) = dS(x)/dx

is the constant
√
2mE. We find

Jinc =
1

m
, Jrefl = −|r|2 1

m
. (100)

Now defining the reflection probability R as the absolute value of the ratio of the reflected flux to

the incident flux, we have

R =

∣

∣

∣

∣

Jrefl
Jinc

∣

∣

∣

∣

= |r|2 = 1. (101)

This is obviously what we expect, since all particles launched from the left must bounce back to the

left.
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10. An Oscillator

We now apply WKB theory to a one-dimensional bound-state problem. Consider a particle

moving in the potential well illustrated in Fig. 13. At the energy E, the left turning point is xℓ and

the right one is xr . We assume the potential rises to infinity to the left of xℓ and to the right of xr, so

no tunnelling out of the well is possible. Region I, x < xℓ, and Region III, x > xr , are the classically

forbidden regions, while Region II, xℓ < x < xr, is the classically allowed region. Figure 14 shows

the orbit H = E in phase space, with arrows indicating the direction of motion.

V (x)

x

E

xℓ xrI II III

Fig. 13. A potential well. There are two turning points
at energy E.

p

x

xℓ xr

I II III

H = E

Fig. 14. Orbit H = E in phase space for the potential in
Fig. 13.

Let us begin with a somewhat intuitive approach. The particles accumulate a phase (1/h̄)
∫

p dx

as they move around the orbit, but lose a phase π/2 when passing through a turning point, so on

going completely around the orbit and passing through two turning points the total phase is

1

h̄

∮

p dx− π. (102)

Notice that
∮

p dx is the area in phase space of the orbit. But if the wave function is single-valued,

then the phase (102) must be 2nπ, for an integer n. Thus we find
∮

p dx = (n+ 1
2 )2πh̄. (103)

Since the area is positive, we have n = 0, 1, 2, . . .. This is the Bohr-Sommerfeld quantization rule

for a one-dimensional oscillator. The discrete set of classical orbits that satisfy this condition are

regarded as quantized orbits.

A region of phase space with area 2πh̄ is sometimes called a Planck cell. The Bohr-Sommerfeld

rule says that the n-th quantized orbit encloses n + 1
2 Planck cells. In particular, the ground state

encloses one half of a Planck cell.

In classical mechanics, the quantity

I =
1

2π

∮

p dx (104)

is called the action of the orbit. (Do not confuse this with other quantities called the “action.”) It

depends on the orbit, that is, I is a function of the energy of the orbit, I = I(E). This function



Notes 7: WKB Method 25

can be inverted to give the energy as a function of the action, E = E(I). It can be shown (see

Prob. 1(a)) that

ω =
dE

dI
. (105)

The Bohr-Sommerfeld quantization rule can be stated by saying that the action is quantized,

In = (n+ 1
2 )h̄. (106)

The quantized values of the action are universal (they apply to all oscillators). The corresponding

quantized energies are obtained through the classical action-energy relationship,

En = E(In). (107)

These are the energy eigenvalues of a one-dimensional oscillator in the WKB approximation. They

are not exact, in general, but they are often good approximations to the true eigenvalues.

To analyze this problem more carefully, and to get the wave functions, we begin by writing

down the wave functions in the three regions in terms of a set of unknown coefficients. We have

ψI(x) =
1

√

|p(x)|
[ag e

K(x,xℓ)/h̄ + ad e
−K(x,xℓ)/h̄], (108a)

ψII(x) =
1

√

p(x)
[br e

iS(x,xℓ)/h̄−iπ/4 + bℓ e
−iS(x,xℓ)/h̄+iπ/4]

=
1

√

p(x)
[b′r e

iS(x,xr)/h̄+iπ/4 + b′ℓ e
−iS(x,xr)/h̄−iπ/4], (108b)

ψIII(x) =
1

√

|p(x)|
[cg e

K(x,xr)/h̄ + cd e
−K(x,xr)/h̄], (108c)

where (ag, ad) and (cg, cd) are the coefficients of the growing and damping waves in Regions I and

III, respectively, and where (bℓ, br) and (b′ℓ, b
′
r) are the coefficients of the waves moving to the left

and right in Region II. The wave in region II is written in two different ways, by referring the action

either to the left or the right turning point. Equation (108a) is patterned on Eq. (88), the unprimed

and primed versions of Eq. (108b) are patterned on Eqs. (90) and (81), respectively, and Eq. (108c)

is patterned on Eq. (84).

To find all the coefficients, we work from the left. In Region I, boundary conditions require

ad = 0, since e−K/h̄ blows up as x → −∞. Take ag = 1 as a provisional normalization. Then by

Eq. (92) we have
(

br

bℓ

)

=

(

1 +i/2

1 −i/2

)(

1

0

)

=

(

1
1

)

. (109)

Next we note that the two expressions for the wave in Region II must be equal, and that

S(x, xℓ) =

∫ x

xℓ

p dx =

∫ xr

xℓ

p dx+

∫ x

xr

p dx = πI + S(x, xr), (110)
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where we use the fact that

Area = 2πI =

∮

p dx = 2

∫ xr

xℓ

p(x) dx. (111)

Thus, in Region II we have

br e
i[πI+S(x,xr)]/h̄−iπ/4 + bℓ e

i[−πI−S(x,xr)]/h̄+iπ/4

= b′r e
iS(x,xr)/h̄+iπ/4 + b′ℓ e

−iS(x,xr)/h̄−iπ/4. (112)

But the right- and left-travelling waves are linearly independent, so this equation can only be satisfied

if
br e

iπI/h̄−iπ/4 = b′r e
iπ/4,

bℓ e
−iπI/h̄+iπ/4 = b′ℓ e

−iπ/4,
(113)

or, with Eq. (109),
(

b′r

b′ℓ

)

=

(

eiπI/h̄−iπ/2

e−iπI/h̄+iπ/2

)

. (114)

Finally, Eq. (85) gives

(

cg

cd

)

=

(

i −i
1/2 1/2

)(

b′r

b′ℓ

)

=

(

2 cos(πI/h̄)

cos(πI/h̄− π/2)

)

. (115)

But boundary conditions on the right require cg = 0, so

πI

h̄
− π

2
= nπ, (116)

which is equivalent to the Bohr-Sommerfeld rule (103) or (106). Also, we find the coefficient cd,

cd = cosnπ = (−1)n. (117)

The wave function in the classically allowed region is conveniently written,

ψII(x) =
2

√

p(x)
cos

[S(x, xℓ)

h̄
− π

4

]

. (118)

We will leave the normalization of this wave function as an exercise.

11. Example: The Harmonic Oscillator

The harmonic oscillator has the Hamiltonian,

H =
p2

2m
+
mω2x2

2
, (119)

so the orbits in phase space are ellipses. The x-intercept of an orbit of energy E is obtained by

setting p = 0 and solving for x,

x0 =

√

2E

mω2 , (120)



Notes 7: WKB Method 27

and the p-intercept by setting x = 0 and solving for p,

p0 =
√
2mE. (121)

The area is

π

√

2E

mω2

√
2mE =

2πE

ω
= (n+ 1

2 )2πh̄, (122)

which we have assigned to the Bohr-Sommerfeld quantized value. Solving for E, we find

En = (n+ 1
2 )h̄ω. (123)

The WKB approximation to the energy levels of the harmonic oscillator is exact.

x

u8(x)

Fig. 15. Exact and WKB approximations to the wave
function of the harmonic oscillator for n = 8. The WKB
approximation is the dotted curve, the exact solution is
the solid curve. The two are indistinguishable at the scale
of the plot except near the turning points, where the WKB
solutions diverge.

p0

−p0
x = L

x

p

Fig. 16. Orbit in phase space for the particle in a box.
The particle bounces back and forth between x = 0 and
x = L with momentum ±p0.

The WKB wave function, however, is only approximate. It is plotted along with the exact wave

function for n = 8 in Fig. 15. The WKB wave functions in the figure are those shown in Eq. (108),

with coefficients determined as in Sec. 10, and with a normalization determined as in Prob. 2(a).

12. Other Types of Turning Points

The intuitive idea behind the Bohr-Sommerfeld quantization rule was explained in Sec. 10: as

the particle goes around its orbit, it accumulates a phase of (1/h̄)
∫

p dx, as well as a phase of −π/2
at each turning point. But if the turning point is at a hard wall, the phase shift is −π instead of

−π/2. That is because e−iπ = −1, so the reflected wave cancels the incident wave at the wall, where

the boundary conditions require ψ = 0.
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For example, consider the particle in a box, with potential

V (x) =

{

0, 0 ≤ x ≤ L,

∞, x < 0 or x > L.
(124)

Let the magnitude of the momentum of the classical particle be p0, so the particle bounces back and

forth with momentum p = ±p0. The energy is E = p20/2m. The orbit in phase space is a rectangle

with area 2p0L, as shown in Fig. 16, so the quantization condition is

1

h̄

∮

p dx− 2π = 2nπ, (125)

or

2p0L = 2πh̄(n+ 1). (126)

Here n = 0, 1, . . . so that the orbit will have positive area (the case n = −1 gives an orbit of zero

energy, which does not correspond to a wave function). We write N = n + 1 = 1, 2, . . .. Then the

energy is

EN =
N2h̄2π2

2mL2
, (127)

the exact answer.

φ

m1

m2

y

x

Fig. 17. A rigid rotor, consisting of two masses m1 and
m2 connected by a massless rod, is rotating in the x-y
plane. The center of mass is at the origin.

Lz0

Lz

φ

φ = 2π

Fig. 18. Phase space for a rigid rotor. The orbit has
angular momentum Lz0. The angle φ is periodic with
period 2π. When the orbit reaches φ = 2π, it jumps back
to φ = 0.

For another example, consider a rigid rotor rotating in the x-y plane. See Fig. 17. Two masses

m1 and m2 are connected by a massless rod. The center of mass is at the origin of the coordinates,

and the angle of rotation is φ. This can serve as a model of the rotations of a diatomic molecule

(but real molecules rotate in three-dimensional space, not in a plane).

Let R be the distance between the two masses, and µ the reduced mass,

1

µ
=

1

m1
+

1

m2
. (128)

The moment of inertia is given by

I = µR2. (129)
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To obtain the Hamiltonian we start with the classical Lagrangian, which is just the kinetic

energy,

L =
1

2
Iφ̇2, (130)

from which we find the momentum conjugate to φ,

pφ =
∂L

∂φ̇
= Iφ̇ (131)

(see Eq. (B.32)). This is otherwise the z-component of the angular momentum, so we shall henceforth

write Lz instead of pφ. The classical Hamiltonian is

H =
L2
z

2I
, (132)

according to Eq. (B.75).

To quantize this Hamiltonian we notice that the configuration space is a circle with coordinate

φ, so we guess the wave function will be ψ(φ), a single-valued function on the circle, that is, a

periodic function of φ. We also guess that Lz, the momentum conjugate to φ, should be interpreted

as the operator −ih̄d/dφ. This is a guess based on the Dirac correspondence p → −ih̄d/dx in the

case of the Cartesian coordinate x. Then the Schrödinger equation Hψ = Eψ becomes

− h̄
2

2I

d2ψ

dφ2
= Eψ(φ). (133)

The normalized eigenfunctions are

ψm(φ) =
eimφ

√
2π
, (134)

where m = 0,±1,±2, . . ., with energies

Em =
h̄2m2

2I
. (135)

These are also eigenfunctions of Lz, with

Lz = mh̄. (136)

Now let us solve the same problem by WKB theory. The phase space is the φ-pφ plane, that is,

the φ-Lz plane. See Fig. 18. The classical orbit has constant velocity in φ, that is, constant Lz. The

orbit with Lz = Lz0 is shown in the figure. Since φ is periodic, when φ reaches 2π it jumps back to

φ = 0. Now there are no turning points, and the integral
∮

pφ dφ has the geometrical interpretation

of the area between the orbit and the φ-axis. The quantization condition is

1

h̄

∮

pφ dφ =
2πLz0

h̄
= 2mπ, (137)

where m is an integer, without any turning point correction. This amounts to a quantization of Lz,

Lz = mh̄, (138)

where we drop the 0 subscript, which gives the energies (135). The WKB wave functions are also

exact.
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13. Planck Cells and Classical Statistical Mechanics

In a one-dimensional problem a Planck cell is defined as a region of phase space of area h = 2πh̄

(h being Planck’s original constant). The Bohr-Sommerfeld quantization condition (103) amounts

to saying that the n-th quantized orbit (counting n = 0, 1, . . .) contains n+ 1
2 Planck cells of area.

For large n, this is approximately one Planck cell per quantum state.

In a system with f degrees of freedom the phase space has dimension 2f and a Planck cell is

defined as a region with a volume (2πh̄)f . A simple rule is that when the quantum numbers are large,

each state occupies a single Planck cell. This rule is asymptotic, which is why we ignore the 1/2 or

other turning point corrections that appear in the one-dimensional Bohr-Sommerfeld condition, or

their generalizations to higher dimensional problems.

This rule means that if we have a Hamiltonian H(x, p), where x = (x1, . . . , xf ) and p =

(p1, . . . , pf ) are f -dimensional vectors, then the number of energy eigenstates with energy less than

some energy E is approximately given by the number of Planck cells inside the region H(x, p) ≤ E

in the classical phase space. We denote this number by N(E), and the stated approximation is

N(E) ≈ 1

(2πh̄)f

∫

H(x,p)≤E

dfx dfp. (139)

The exact function N(E) is a step function that rises by 1 each time the energy E rises above a

nongenenerate energy eigenvalue En (or by the degeneracy in the case of a degenerate eigenvalue),

while (139) is a smooth approximation to N(E).

Consider, for example, a free particle confined by hard walls to a region R of three-dimensional

configuration space. In this case f = 3. The region R need not have any simple shape, such as a

box or a sphere. The energy is p2/2m when x ∈ R, so the region of phase space where H ≤ E0

consists of all points (x,p) such that x ∈ R and

|p| ≤ p0 =
√

2mE0. (140)

The phase space volume of this region is
∫

R

d3x

∫

|p|≤p0

d3p = V
4π

3
p30, (141)

where V is the (3-dimensional) volume of R in configuration space and the momentum integral gives

the volume of a sphere of radius p0 in momentum space. Thus, according to the rule, the number

of energy eigenstates with energy ≤ E0 is given approximately by

N(E0) =
4π

3

V

(2πh̄)3
(2mE0)

3/2. (142)

This is not counting the spin degrees of freedom of the particle; if the particle has spin s, this number

must be multiplied by 2s+ 1.

By differentiating Eq. (142) with respect to energy we obtain the density of states,

dN

dE
=

V

(2πh̄)3
4πm

√
2mE. (143)
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This formula is useful in statistical mechanics where it is usually derived for a particle in a three-

dimensional box. It actually applies (in an asymptotic sense) to a region of volume V of any shape.

When physicists refer to the “density of states” they almost always mean the number of states

per unit energy interval, as here. But if we ask for the number of states per unit volume in phase

space, the answer is 1/(2πh̄)f , where f is the number of degrees of freedom. This is a universal

result (independent of the Hamiltonian).

The number of states (139) can be expressed in a slightly different form with the aid of the

Heaviside step function. This function is defined by

Θ(x) =

{

0, x < 0

1. x ≥ 0
, (144)

and it satisfies
d

dx
Θ(x) = δ(x). (145)

The number of states function (139) can be written in an alternative form,

N(E) =
1

(2πh̄)f

∫

dfx dfpΘ
(

E −H(x, p)
)

, (146)

where now the integral is taken over all of the 2f -dimensional phase space. The Θ-function is 1

inside the region H(x, p) ≤ E and 0 outside.

This in turn imples a formula for the density of states,

dN

dE
=

1

(2πh̄)f

∫

dfx dfp δ
(

E −H(x, p)
)

, (147)

which expresses it in terms of the classical Hamiltonian.

These results are useful in statistical mechanics. Consider the partition function,

Z(β) = tr e−βĤ =
∑

n

e−βEn , (148)

where n represents a quantum number or set of quantum numbers, however complex, needed to

specify a unique energy eigenstate. (If there are degeneracies, then they are represented in Eq. (148)

by the repetition of the energy eigenvalue En for different values of n.) When the number of degrees

of freedom f is greater than 1 or 2, and when the energy is substantially above the ground state,

the density of states of most systems becomes quite large and N(E) becomes a very large number.

This makes it a good approximation to replace the sum (148) by an integral,

Z(β) =

∫ ∞

−∞

dE
dN

dE
e−βE , (149)

where dN/dE is understood to vanish below the ground state energy, so the lower limit of integration

can be any energy in that range.
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Now we substitute the semiclassical approximation (147), whereupon the energy integral can

be done. This gives

Z(β) =

∫ ∞

−∞

dE
1

(2πh̄)f

∫

dfx dfp δ
(

E −H(x, p)
)

e−βE, (150)

or

Z(β) =
1

(2πh̄)f

∫

dfx dfp e−βH(x,p). (151)

This is the classical approximation to the partition function, which was known, apart from the

normalization (2πh̄)f , before the advent of quantum mechanics.

Problems

1. In this problem we work with one-dimensional, kinetic-plus-potential Hamiltonians,

H =
p2

2m
+ V (x). (152)

(a) Prove Eq. (105) when the motion is governed by the Hamiltonian (152).

(b) A classical charged particle in periodic motion radiates at the frequency ω of the motion as well as

all higher harmonics kω, k = 2, 3, . . .. In many cases the power radiated at higher harmonics is small,

but the general principle holds. This follows from standard methods of classical electromagnetic

theory, applied to a particle in periodic motion.

In quantum mechanics, the frequency of the radiation emitted by a particle is ∆E/h̄, where ∆E

is the energy difference between an initial and final state. This follows from the Einstein relation

E = h̄ω for the energy of a photon and the Bohr notion that mechanical systems (atoms etc) have

discrete energy levels. This part of the argument was understood in the days of the old quantum

theory, well before modern quantum mechanics had been developed.

Consider a one-dimensional oscillator in quantum state n with energy En where n is large, and

suppose it makes a transition to lower energy level n − ∆n, where ∆n is small. Using the Bohr-

Sommerfeld quantization rule, show that the frequency of the emitted radiation is approximately a

harmonic of the classical frequency ω at classical energy En.

Notice that if the power radiated in higher harmonics of the classical problem is small, it means

that the most probable quantum transition is one with ∆n = 1.

2. Consider the Bohr-Sommerfeld quantization of a 1-dimensional oscillator in a potential V (x).

(a) Integrate the square of the WKB wave function ψ between the two turning points to obtain

the normalization constant. The wave function blows up at the turning points, but you can do the

integral anyway. Write out the normalized wave function. (The damped waves in the classically
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forbidden regions can be ignored.) Replace cos2 by the average value 1/2 in the integrand before

doing the integral. Express the normalization constant both in terms of the classical period T and

the quantity ∂En/∂n, where n is treated as a continuous quantity.

(b) Now assume the potential well is symmetric, V (−x) = V (x), with V (0) = 0. Show that

|ψ(0)|2 =
1

πh̄

√

2m

E

∂En

∂n
cos2

(nπ

2

)

, (153)

and

|ψ′(0)|2 =

√
8m3E

πh̄3
∂En

∂n
sin2

(nπ

2

)

. (154)

Carry your calculations only out to leading order in h̄.

3. Consider the potential energy illustrated in Fig. 19.

x

V (x)

E

x1 x2x0

Fig. 19. Potential for problem 3.

For the energy shown, there are three turning points. In the region to the left of x0 let ψ have

the form,

ψ(x) =
1

p(x)1/2

(

eiS(x,x0)/h̄ + re−iS(x,x0)/h̄
)

, (155)

where r is the reflection amplitude. Find r as a function of the energy E. Please use the following

notation:

Φ =
2

h̄
S(x2, x1), (156)

and

κ =
1

h̄
K(x1, x0). (157)

Hint: work from right to left.

Show that |r|2 = 1, which means that all particles sent in from the left come back (ingoing and

outgoing fluxes are equal). Show that when the energy is not close to a nominal Bohr-Sommerfeld



34 Notes 7: WKB Method

energy level of the well, then r ≈ −i (the value r would have if there were no well to the right of

x0), but that when E increases through such an energy level, then the phase of r rapidly increases

by 2π. This is a resonance. Estimate the range ∆E over which this change takes place. Assume

that the energy is not too close to the top of the well, i.e., the quantity e−κ is small.

Estimate the ratio ψin/ψout of the wave function inside and outside the well, in the case where

E is far from a Bohr-Sommerfeld energy level of the well, and in the case where E is equal to one

of these energy levels.

4. The radial wave equation in 3-dimensional problems with central force potentials looks like a

1-dimensional Schrödinger equation,

− h̄2

2m

d2f

dr2
+ U(r)f(r) = Ef(r), (158)

except that r ranges from 0 to ∞, and the potential U(r) is the sum of the centrifugal potential and

the true potential V (r),

U(r) =
ℓ(ℓ+ 1)h̄2

2mr2
+ V (r). (159)

See Notes 16. Therefore one-dimensional WKB theory can be applied to the radial wave equation.

It can be shown that more accurate results are obtained in the WKB treatment if the quantity

ℓ(ℓ + 1) in the centrifugal potential is replaced by (ℓ + 1
2 )

2. This is called the Langer modification.

Just accept this fact for the purposes of this problem; the justification has to do with the singularity

of the centrifugal potential as r → 0.

(a) Take the case of a free particle, V (r) = 0. Find the WKB solution in the classically allowed

region. For boundary conditions in the classically forbidden region near r = 0, just assume that

there is only a growing wave (as r increases). Evaluate all functions explicitly; use the abbreviation

k =
√
2mE/h̄. Take the limit r → ∞, and reconcile the result with the asymptotic forms of the

spherical Bessel function jℓ(ρ), quoted by Sakurai in his Eq. (A.5.15). (Sakurai’s ρ = kr.)

(b) Consider a potential V (r) which is not zero, but which approaches 0 as r → ∞. Since the

particle approaches a free particle as r → ∞, we might expect the solution at large r to look like

a free particle solution, but with a phase shift. Explicitly, if the free particle solution has the form

f(r) = cos(kr + αf ) as r → ∞, where αf is the phase shift for the free particle, and the solution

in the presence of the potential has the form f(r) = cos(kr + αp) as r → ∞, where αp is the phase

shift in the presence of the potential, then we define δ = αp − αf as the phase shift in the potential

scattering, measured relative to the phase shift of a free particle. Use WKB theory to write down

an expression for δ, which will involve the limit of a certain quantity as r → ∞.

(c) Does this limit exist? It can be shown that it does if V (r) falls off more rapidly as r → ∞ than

the centrifugal potential, i.e., more rapidly than 1/r2; the limit also exists when the true potential

falls off exactly as fast as the centrifugal potential, i.e., as 1/r2. Therefore consider the case that
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V (r) approaches 0 as 1/rα, where 0 < α < 2. Show that the phase shift exists only if 1 < α < 2. In

particular, in the important case of the Coulomb potential (α = 1), the phase shift does not exist

(the asymptotic form of the radial wave function f is more complicated than a phase-shifted free

particle solution).

5. Consider a quantum particle bouncing off the floor. The vertical coordinate is x, and V (x) = mgx.

The floor at x = 0 acts like a hard wall.

(a) Write down the Schrödinger equation and solve it in terms of Airy functions. Let zn be the n-th

root of the Airy function, that is, Ai(zn) = 0, where the roots satisfy

. . . < z2 < z1 < z0 < 0. (160)

Express the energy eigenvalues as a dimensionless multiple of the reference energy,

K =
(mg2h̄2

2

)1/3

. (161)

(b) For the classical bouncing ball, sketch the orbits in phase space. Let h = E/mg be the height

to which the ball bounces (but don’t confuse h with h̄). Find the Bohr-Sommerfeld approximations

to the energy eigenvalues En, n = 0, 1, . . .. Express your answer as a dimensionless multiple of K.

The first three zeroes of the Airy function are −2.33811, −4.08795 and −5.52056. Compare the

Bohr-Sommerfeld approximation to the exact eigenvalues for the first three eigenstates.

6. Consider the isotropic harmonic oscillator in two dimensions,

H =
p2x + p2y
2m

+
mω2

2
(x2 + y2). (162)

Let the number of energy levels less than or equal to a given energy E be N(E). Degenerate energy

levels are counted with their multiplicity. This is a function that increases in steps, but a continuous

approximation to it can be obtained by the rule that each quantum state occupies a single Planck

cell, as explained in Sec. 13. Evaluate the integral,
∫

d2x d2p (163)

over the region H(x,p) ≤ E to find an estimate for N(E).

Next, given that E is exactly an energy eigenvalue, evaluate N(E) exactly, and compare to the

estimate.

7. Let S(x) be a solution of the Hamilton-Jacobi equation (25), and define a momentum field

p = p(x) = ∇S(x), as in Eq. (10). The Hamiltonian for this problem is Eq. (2). In terms of the

momentum field we define a velocity field,

v = v(x) =
p(x)

m
, (164)
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This velocity field is similar to the velocity field of a fluid, which is associated with stream lines.

As described in the notes, we think of space as being filled with a swarm of particles, in which the

particle at position x has velocity v(x) and momentum p(x).

Let x0 be a fixed point of space, and consider a function X(t), defined by

dX

dt
= v

(

X(t)
)

, (165)

with initial coniditions X(0) = x0. The function X(t) defines a stream line of the velocity field. It is

also the trajectory of the particle that was at position x0 time t = 0, if it follows the velocity field.

Now define the function

P(t) = p
(

X(t)
)

, (166)

so that P(t) is the value of the momentum field at position X(t). Show that

dP

dt
= −∇V

(

X(t)
)

. (167)

This means that the combined functions X(t), P(t) are solutions of the classical Hamilton’s equa-

tions, with inition conditions X(0) = x0 and P(0) = p(x0).

The conclusion is this: If the ensemble of classical particles implied by S(x) is allowed to evolve

in time according to the classical Hamilton’s equations, then the condition that the particle at

position x has momentum p, which holds at t = 0, continues to hold for all time. This fact is more

dramatic and amazing in multidimensional problems than it is in one dimension, which is why we

presented the three-dimensional version of WKB theory first in these notes.

8. The Coulomb potential, V (r) = −k/r, has an infinite number of bound states, but other potentials

have only a finite number. The bound energy levels in the Coulomb potential are

En = − k

2a0n2
, (168)

where a0 is the Bohr radius, and they are n2-fold degenerate. See Notes 17. The principal quantum

number n takes on the values n = 1, 2, . . ..

(a) Using the method of Sec. 13, estimate the number of energy levels less than a given energy E,

where E < 0. Do this in the following way. You need to evaluate the integral,
∫

H(x,p)≤E

d3x d3p, (169)

where

H(x,p) =
p2

2m
− k

r
. (170)

This is an integral over a 6-dimensional region of the classical phase space. First let R be the region

of 3-dimensional x-space over which the kinetic energy p2/2m can be ≥ 0, when H ≤ E. This will

be sphere of radius r0, which depends on the energy E. Let x be a point inside R, and let p0(x)
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be the maximum value of p at that point, corresponding to the maximum kinetic energy allowed at

that point for the given value of E. Then the integral (169) can be written,

∫

r≤r0

d3x

∫

p≤p0(x)

d3p. (171)

The mometum integral is just taken over a sphere in momentum space, so its value is

4

3
πp30. (172)

Then do the x integral to get the estimate for the number of bound states with energy ≤ E.

(b) Now take the exact energy levels (168), and let N be an estimate for the energy level that most

closely satisfies EN = E. You may assume that E1 < E < 0, and that N is fairly large, since we are

only making asymptotic estimates here (E1 is the ground state energy). Then estimate the sum

N
∑

n=1

gn, (173)

where gn is the degeneracy of En, and compare it to the results of part (a). You may make the

estimate by replacing the sum by an integral.

(c) You will see from this calculation that the reason that the Coulomb potential possesses an

infinite number of bound states is that it has a long-range tail, which dies off only as 1/r. It does

not come from the singularity at r = 0. Suppose we have a potential that dies off as 1/rp, where p

is a power 0 < p < 2. This includes the Coulomb potential (for p = 1) as well as potentials that die

more or less rapidly than the Coulomb potential. For p > 1 the potential dies off more rapidly than

the Coulomb potential, and it’s logical that at some value of p the number of bound states will stop

being infinite and will become finite. Find the value of p for which the number of bound states is

infinite, but above which the number is finite.


