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Notes 34

The Photoelectric Effect†

1. Introduction

In these notes we consider the ejection of an atomic electron by an incident photon, which

is an example of the photoelectric effect. The photon should have an energy in the ultraviolet to

x-ray range, for reasons to be explained below; thus, our results will provide a semi-quantitative

model for the absorption of x-rays by matter. In these notes, we use a version of the semiclassical

theory of radiation, in which the radiation field is treated classically, but the atomic system quantum

mechanically. Certain quantum mechanical concepts, notably photons, are used in the description of

the classical radiation field. The photoelectric effect is not only interesting and important physically,

but the following calculation also provides excellent exercise in time-dependent perturbation theory,

the treatment of cross sections, and assorted physical facts.

2. The Incident Photon

We suppose the incident photon has energy E0 = h̄ω0 and momentum p0 = h̄k0. (We use the

0 subscript to refer to the incident photon; quantities without this subscript, such as E or k, will

refer to the ejected electron.) For simplicity, we assume the atom has a single electron (or a single

electron of interest), and that it is initially in its ground state. We let Eg be the energy of this

ground state; naturally, Eg < 0. Then by conservation of energy, we must have

h̄ω0 > |Eg|, (1)

so that the photon will have enough energy to eject the electron.

Actually, we will make a stronger assumption, namely,

h̄ω0 ≫ |Eg|, (2)

for the following reason. Assuming the atom is initially neutral, the ejected electron leaves a positive

ion behind and travels out in the long-range Coulomb field of the ion. Therefore the final electron

state is not that of a free particle, but rather one of the unbound or positive energy solutions of

the Coulomb potential. The unbound Coulomb wave functions are important in many applications,

† Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/1920/221.html.
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and they can be determined by the usual methods for solving differential equations (power series,

etc). These wave functions turn out to be hypergeometric functions, and for serious work involving

Coulomb scattering and other applications one must know about them. Nevertheless, it would be

simpler if we could deal with free particle wave functions for the final electron states. We can do this

in a certain approximation if we assume that the energy of the ejected electron is much greater than

the binding energy |Eg|, so that the ejected electron does not feel the Coulomb field very much. This

is why we make the assumption (2), so that we can approximate the final electron wave functions

by free particle solutions.

By energy conservation we have

h̄ω0 + Eg = E, (3)

where E is the final electron energy. Under the condition (2), both h̄ω0 and E will be large compared

to |Eg|, and nearly equal to one another. Therefore we can rewrite the condition (2) in another form,

and combine it with the condition that our electron be nonrelativistic, by writing

|Eg| ≪ E ≪ mc2. (4)

This can be put into dimensionless form by dividing by mc2,

(Zα)2 ≪ E

mc2
≪ 1, (5)

where we use the estimate |Eg| ∼ (Zα)2mc2, valid for hydrogen-like atoms. For example, in the case

of hydrogen, we might restrict the energy of the incident photon to lie in the range,

100 ev <≈ h̄ω0 <≈ 100 Kev. (6)

Such photons lie in the far ultraviolet to x-ray region. If we were willing to deal with hypergeometric

functions we could extend the lower limit downward; if we were willing to use relativistic quantum

mechanics, we could extend the upper limit upwards. But we will live with the stated limits.

We will describe the incident photon by means of a classical light wave, with vector potential

A(x, t) = A0ǫe
i(k0·x−ω0t) + c.c., (7)

where A0 is the amplitude (assumed to be real), and where ǫ is the polarization unit vector (also

assumed to be real, indicating linear polarization). This vector potential is in the Coulomb gauge

(the scalar potential is taken to be zero), so that

∇ ·A = 0, (8)

as follows by taking the divergence of Eq. (7) and using the transversality condition,

ǫ · k0 = 0. (9)
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3. The Atomic System

The atomic system for the one-electron atom described by the unperturbed Hamiltonian,

H0 =
p2

2m
+ V (x). (10)

For part of the following calculation we can leave V (x) unspecified, but at a certain point we will

specialize to a hydrogen-like atom with

V (x) = −Ze
2

r
. (11)

As mentioned, we assume that the atom is initially in its ground state |g〉 with energy Eg, so that

H0|g〉 = Eg|g〉. (12)

We will assume that the unbound electron in the final state is described by a plane wave with wave

vector k,

ψk(x) = 〈x|k〉 = eik·x√
V
, (13)

where we adopt box normalization as in Eqs. (33.63)–(33.65). The final energy is denoted E.

The perturbing Hamiltonian is

H1 =
e

mc
p ·A, (14)

which comes from expanding (1/2m)(p + eA/c)2 and dropping the term in A2. We note that

p · A = A · p because of the Coulomb gauge condition (8). We will also write the perturbing

Hamiltonian in the form,

H1(t) = Ke−iω0t +K†e+iω0t (15)

[see Eq. (33.39)], so that

K =
eA0

mc
(ǫ · p)eik0·x. (16)

We drop the term in A2 because we will be working only to first order in perturbation theory; if we

were to go to second order, this term would have to be included.

4. The Transition Rate

We can now proceed to the transition rate, which follows from Eq. (33.42) and which we write

in the form,

w =
2π

h̄2

∑

k

|〈k|K|g〉|2∆t(ω), (17)

where

ω =
E − h̄ω0 − Eg

h̄
=

1

h̄

( h̄2k2

2m
− h̄ω0 − Eg

)

. (18)
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The sum in Eq. (17) is to be taken over final states which lie in a small cone of solid angle ∆Ω about

some final wave vector kf , as in Fig. 33.5. We choose the direction of kf to be some direction of

interest, and we choose the magnitude of kf by conservation of energy, so that

h̄2k2f
2m

= h̄ω0 + Eg. (19)

The notational difference between k and kf is that k is a variable final electron state over which we

are summing, which does not necessarily conserve energy, while kf does conserve energy and is in

some fixed direction of interest.

Next we make the replacement

w → dw

dΩ
∆Ω (20)

and the replacement (33.76) in Eq. (17), in order to go over to the transition rate per unit solid

angle. This gives
dw

dΩ
=

2π

h̄2
V

(2π)3

∫ ∞

0

k2 dk |〈k|K|g〉|2∆t(ω), (21)

which we will transform in various ways. First we must relate dw/dΩ to the differential cross section,

dw

dΩ
= nivi

dσ

dΩ
, (22)

where ni is the number density of the incident particles and vi is their velocity. But since the incident

particles are photons, their velocity is vi = c.

To compute ni we must mix classical and quantum concepts. An incident beam consisting

of ni photons per unit volume has an energy density u = nih̄ω0; on the other hand, by classical

electromagnetic theory we have u = (E2 +B2)/8π. In the light wave (7) the electric and magnetic

contributions to the energy density are equal, and cross terms vanish when we average over the

volume of the box. Thus we find,

u =
E2 +B2

8π
=
ω2
0A

2
0

2πc2
= nih̄ω0, (23)

or

ni =
ω0A

2
0

2πh̄c2
=
k0A

2
0

2πh̄c
, (24)

where we have used ω0 = ck0. We now solve Eq. (22) for the cross section, finding,

dσ

dΩ
=

2πh̄

k0A2
0

dw

dΩ
. (25)

5. The Matrix Element and Cross Section

Next we work on the right hand side of Eq. (21). First, we write out the matrix element, using

Eq. (16),

〈k|K|g〉 = eA0

mc
〈k|(ǫ · p)eik0·x|g〉 = eA0h̄

mc
(ǫ · k)〈k|eik0·x|g〉, (26)
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where in the final step we have allowed the momentum operator p to act to the left on the plane

wave state 〈k|, bringing out a factor of h̄k. The remaining matrix element can be expressed in terms

of the Fourier transform of the ground state wave function ψg(x) = 〈x|g〉,

〈k|eik0·x|g〉 = 1√
V

∫

d3x e−i(k−k0)·x ψg(x) =
(2π)3/2√

V
ψ̃g(q), (27)

where

q = k− k0 (28)

and where

ψ̃g(q) =

∫

d3x

(2π)3/2
e−iq·x ψg(x). (29)

Finally, we transform the function ∆t(ω) in Eq. (21), using Eqs. (18) and (19):

∆t(ω) → δ(ω) =
m

h̄k
δ(k − kf ). (30)

At this point we remark that had we been doing a problem in the emission or absorption of

optical radiation from an atom, we would have been able to expand the exponential eik0·x in Eq. (26),

since radiation in this frequency range satisfies k0r ≪ 1 (the wavelength is much larger than the

atomic size). This would lead to the multipole expansion (the dipole approximation at lowest order).

We cannot make this expansion in the present calculation, however, because we are dealing with

radiation of short wavelength, such as x-rays.

We now gather all the pieces together [Eqs. (25), (21), (26), (27) and (30)] to obtain

dσ

dΩ
=

2πh̄

k0A2
0

2π

h̄2
V

(2π)3

∫ ∞

0

k2 dk
e2A2

0h̄
2

m2c2
(ǫ · k)2 (2π)

3

V
|ψ̃g(q)|2

m

h̄k
δ(k − kf ), (31)

or,
dσ

dΩ
= (2π)2

e2

mc2
kf
k0

(ǫ · kf )
2|ψ̃g(q)|2, (32)

where now q = kf − k0. We see that all the volume factors cancel out of Eq. (31), as they should,

as do the factors of A0, which we expect because a cross section by definition is independent of the

incident flux. The vector q = kf − k0 reminds us of the momentum transfer vector kf − ki which

occurred in our analysis of elastic scattering in Notes 33, but here the quantity h̄q is the momentum

difference between the final electron and the initial photon. Unlike the case of elastic scattering,

where we had kf = ki, here the vectors kf and k0 are of different magnitudes.

6. Momentum Transfer

The fact that the vector q is nonzero means that a proper understanding of momentum con-

servation must take into account the nucleus as well as the photon and the electron. The reason the

nuclear momentum has not appeared explicitly in our calculations is that we implicitly assumed in

writing down Eq. (10) that the nuclear mass was infinitely large in comparison to the electron mass.
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This of course is a good approximation, and it means that the nucleus can carry off a large amount

of momentum without moving very fast. In the limit of infinite nuclear mass, the nucleus acts like a

momentum source or sink which is able to provide whatever momentum is needed for the reaction

at hand. This is important, because in the absence of such a momentum source, a reaction such as

γ + e→ e, (33)

that is, the absorption of a photon by a free electron, is impossible (one cannot satisfy both energy

and momentum conservation in this reaction). Similarly, in the absence of a momentum source, the

reaction

e→ e+ γ (34)

is impossible. But if there is a nucleus nearby to take up some momentum, then the reaction (34)

does occur; this is called Bremsstrahlung (German for “braking radiation”), and it is one of the

principal mechanisms for the slowing down of fast charged particles in matter (especially important

for light particles like electrons and muons). Our assumption of infinite nuclear mass in the present

calculation has caused the conservation of momentum to appear only implicitly, in contrast to the

conservation of energy, which is explicitly expressed by the δ-function in Eq. (31).

We have written the cross section (32) so that the classical radius of the electron re makes its

appearance,

re =
e2

mc2
= α2a0 = 2.82× 10−13cm. (35)

This radius is called classical because there is no h̄ in it; its physical meaning is that it is the radius

(to within an order of magnitude) outside of which the electrostatic energy of the nominal monopole

field (divided by c2) equals the mass of the electron. The total electrostatic energy in the field of a

monopole is, of course, infinite.

To proceed with the analysis, we will now assume that V (r) = −Ze2/r, for a hydrogen-like

atom. Then the ground state wave function is

ψg(x) =
1√
πa3

e−r/a, (36)

where a = a0/Z and a0 is the usual Bohr radius. It is then straightforward to compute the Fourier

transform, according to Eq. (29). We find

ψ̃g(q) =
1

π

(2a)3/2

(1 + a2q2)2
. (37)

This is obviously proportional to the momentum-space wave function of the ground state of the

hydrogen atom; notice that it is a rational function of the momentum. In any case, the cross section

now becomes
dσ

dΩ
= 32

e2

mc2
kf
k0

|ǫ · kf |2
a3

(1 + a2q2)4
. (38)
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7. Approximating the Cross Section

This cross section can be boiled down further by incorporating the approximation (4). This

occurs in two steps. First, it turns out that the initial photon wave number k0 is much smaller than

the final electron wave number kf . To show this, we write out the conservation of energy equation

(3) in the form

h̄ω0 = h̄ck0 ≈
h̄2k2f
2m

, (39)

where we neglect Eg in comparison to h̄ω0. But this can be put in the form,

k0
kf

≈ h̄kf
2mc

=
pf
2mc

=
vf
2c

≪ 1, (40)

where pf and vf are the final electron momentum and velocity, respectively, and where we make use

of the nonrelativistic assumption E ≪ mc2. We see that k0/kf is indeed small, of the order of vf/c,

and for consistency in a nonrelativistic treatment, we should neglect terms of relative order

(k0
kf

)2

∼
(vf
c

)2

. (41)

For example, the quantity q2, which occurs in the cross section (38), can be approximated,

q2 = (kf − k0)
2 ≈ k2f − 2kf · k0 = k2f − 2kfk0 cos θ

= k2f

(

1− vf
c

cos θ
)

, (42)

where we neglect terms of relative order (k0/kf )
2. This is the first approximation.

On the other hand, we also have

a2k2f =
2ma2

h̄2
h̄2k2f
2m

∼ h̄2

Z2me4
E ∼ E

|Eg|
≫ 1, (43)

so that

1 + a2q2 ≈ a2k2f

(

1− vf
c
cos θ

)

. (44)

This is the second approximation.

8. Angular Dependence and Total Cross Section

We now introduce coordinates, as illustrated in Fig. 1. We assume the atom is at the origin,

and that the photon comes in along the negative z-axis, so that k0 = k0ẑ. The photon is assumed to

be linearly polarized in the x-direction, so that ǫ = x̂. The ejected electron goes out in the direction

(θ, φ).

With the geometry indicated in Fig. 1 and the approximations (42) and (44), we can simplify

the cross section (38). We find

dσ

dΩ
=

32

k0

( e2

mc2

) 1

(kfa)5
sin2 θ cos2 φ

[1 − (vf/c) cos θ]4
. (45)
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Fig. 1. Coordinates for the photoelectric effect.

This is the cross section for linear polarization in the x-direction. If we had had linear polarization

in the y-direction, we would have obtained sin2 φ in Eq. (45) instead of cos2 φ. To deal with the

case of unpolarized light, we must average over initial polarizations; this can be carried out formally

by using a density matrix for the photons, but in the present case it amounts to adding sin2 φ and

cos2 φ and dividing by 2. If we also expand the denominator to first order in vf/c, we obtain

( dσ

dΩ

)

unpol
=

16

k0

( e2

mc2

) 1

(kfa)5
sin2 θ

(

1 + 4
vf
c

cos θ
)

. (46)

Finally, we can integrate this over all solid angles of the final ejected electron, whereupon the term

in cos θ disappears, to obtain the total cross section for unpolarized radiation,

σtot =
128π

3

1

k0

( e2

mc2

) 1

(akf )5
. (47)

The total cross section can be written in various ways; for example, we can express it in terms

of the incident photon energy E0 = h̄ω0 and the Bohr radius a0 of hydrogen:

σtot =
16π

√
2

3
α8Z5a20

(mc2

E0

)7/2

, (48)

where α is the fine structure constant. In this form the cross section is manifestly an area, since a20

is essentially the cross-sectional area of a hydrogen atom. This area is reduced by the very small

factor α8, but magnified by the presumably large factor (mc2/E0)
7/2 (because of the nonrelativistic

assumption E ≪ mc2), and by the possibly large factor Z5. Although this formula was derived only

for a hydrogen-like atom, it is valid in a semiquantitative way for the ejection of K-shell electrons

by x-rays in any atom. The strong Z-dependence indicates that heavier atoms are more effective

in stopping x-rays, and the strong inverse energy dependence indicates that hard x-rays are more

penetrating than soft ones.
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Problems

1. X-rays of energy E0 that are linearly polarized in the x-direction are incident upon positronium

in the ground state. The beam of x-rays is directed in the +z direction. The positronium “atom” is

at rest. Find the differential cross section dσ/dΩ for the x-ray to break the “atom” apart, where Ω

refers to the direction of the ejected electron. Assume

e2

a0
≪ E0 ≪ mc2, (49)

where a0 is the usual (hydrogen) Bohr radius, and make approximations this set of notes. In

particular, expand your answer through first order in vf/c. Find the total cross section and express

it as a function of E0, and as a multiple of a20.

Note that the light wave interacts with both the electron and the positron; therefore you must

set up a two-particle Hamiltonian.


