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Notes 22

Bound-State Perturbation Theory†

1. Introduction

Bound state perturbation theory applies to the bound states of perturbed systems, for which the

energy levels are discrete and separated from one another. The system may also have a continuous

spectrum, but the interest is attached to the discrete states. The effects of perturbations on states

of the continuous spectrum, or on discrete states imbedded in the continuum, require different

techniques, such as time-dependent perturbation theory.

The version of bound-state perturbation theory that you are probably familiar with is called

Rayleigh-Schrödinger perturbation theory. In these notes, we will begin with a variation on Rayleigh-

Schrödinger perturbation theory, called Brillouin-Wigner perturbation theory. The Brillouin-Wigner

theory is simpler and less messy to derive than the Rayleigh-Schrödinger theory, and it also gives

more accurate answers in many circumstances. Its disadvantage is that the unknown energy levels

are given only implicitly, in terms of the solutions of nonlinear equations. But if explicit formulas

for the energy levels are desired, it is easy to expand the solutions in powers of the perturbation

parameter, whereupon the results of the Rayleigh-Schrödinger theory are recovered. In my opinion,

this is the easiest and most elegant way to derive Rayleigh-Schrödinger perturbation theory.

2. The Unperturbed and Perturbed States

We consider an unperturbed Hamiltonian H0 with eigenvalues ǫk and eigenstates |kα〉, where

α is an index introduced to resolve degeneracies, so that

H0|kα〉 = ǫk|kα〉. (1)

See Fig. 1, in which the unperturbed levels ǫk are illustrated on a vertical axis. Although we use a

notation appropriate for a discrete spectrum of H0, we actually allow it to have a mixed spectrum,

typically a continuous spectrum above some energy and a discrete one below that, as often happens

in practice. Sums over states, such as Eq. (4), must be interpreted as including the continuous part

of the spectrum, as necessary, as shown for example in Eqs. (1.109) and (1.110).

† Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/1920/221.html.
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We pick one of the discrete levels ǫn for study, so the index n will be fixed for the following

discussion. We denote the eigenspace of the unperturbed system corresponding to eigenvalue ǫn by

Hn, so that the unperturbed eigenkets {|nα〉, α = 1, 2, . . .} form a basis in this space.

Energy

E
ǫnǫk

H0 H0 +H1

Fig. 1. The energy levels ǫk of the unperturbed systemH0

are shown on a vertical axis. These levels are degenerate
in general. One of these, ǫn, is selected out for study.
When the perturbation H1 is turned on, level ǫn may split
and shift. The energy level E of the perturbed system
H0 + λH1 is one that grows out of ǫn as the perturbation
is turned on.

Hn

H⊥
n

|ψ〉
Q|ψ〉

P |ψ〉

Fig. 2. Subspace Hn is the unperturbed eigenspace for
level ǫn, and H⊥

n is the orthogonal subspace. Projectors P

and Q project onto Hn and H⊥
n , respectively. The exact

eigenstate lies approximately in Hn, with a small correc-
tion Q|ψ〉 orthogonal to this subspace.

We take the perturbed Hamiltonian to be H = H0 + λH1, where λ is a formal expansion

parameter that we allow to vary between 0 and 1 to interpolate between the unperturbed and

perturbed system. When the perturbation is turned on, the unperturbed energy level ǫn may split

and shift. We denote one of the exact energy levels that grows out of ǫn by E, as shown in Fig. 1.

We let |ψ〉 be an exact energy eigenket corresponding to energy E, so that

H |ψ〉 = (H0 + λH1)|ψ〉 = E|ψ〉. (2)

Both E and ψ are understood to be functions of λ; as λ → 0, E approaches ǫn and |ψ〉 approaches

some state lying in Hn. Equation (2) only determines |ψ〉 to within a normalization and phase,

which can be functions of λ; we are free to choose as we wish these to simplify our work.

It helps to have a picture of the perturbation problem in terms of the geometry of Hilbert

space. We break the Hilbert space into the subspace Hn and its orthogonal complement which we

denote by H⊥
n . The latter space is spanned by the unperturbed eigenkets {|kα〉} for all k 6= n.

Since the perturbation is small, the exact eigenket |ψ〉 presumably lies nearly in Hn, with only a

small component orthogonal to Hn, as illustrated in Fig. 2. The components of |ψ〉 parallel and

perpendicular to Hn are conveniently expressed in terms of the projector P onto the subspace Hn

and the orthogonal projector Q, defined by

P =
∑

α

|nα〉〈nα|, (3)
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and

Q =
∑

k 6=n
α

|kα〉〈kα|. (4)

These projectors satisfy P 2 = P , Q2 = Q, PQ = QP = 0 and P +Q = 1. They also commute with

H0,

[P,H0] = [Q,H0] = 0, (5)

since they project onto eigenspaces of H0. In terms of these projectors, the components of |ψ〉

parallel and perpendicular to Hn are P |ψ〉 and Q|ψ〉, respectively, as illustrated in Fig. 2.

The component P |ψ〉 of the exact eigenstate |ψ〉 lies in the unperturbed eigenspace, and thus

is itself an unperturbed eigenstate. It is therefore a linear combination of the known unperturbed

eigenstates {|nα〉, α = 1, 2, . . .}. The orthogonal component Q|ψ〉, on the other hand, is harder to

find. In the following we will think of P |ψ〉 as the easy part of |ψ〉 and Q|ψ〉 as the hard part, and

attempt to solve for the hard part Q|ψ〉 (or else the total solution |ψ〉 = P |ψ〉+Q|ψ〉) in terms of the

easy part P |ψ〉. It turns out it is possible to write a neat power series expansion for this solution,

Eq. (16) below.

As a first step in the derivation of this series, we rearrange Eq. (2) in the form,

(E −H0)|ψ〉 = λH1|ψ〉. (6)

We would like to divide this equation by E − H0 to solve for |ψ〉, but before proceeding we must

examine (E −H0)
−1 to see if it is well behaved. The idea of dividing by E −H0 is closely related

to the use of Green’s functions. See Notes 36, where the basic idea is presented and developed.

3. The Inverse of E −H0 on H⊥
n

The operator (E −H0)
−1 is a function of the operator H0, which according to Eq. (1.129) can

be written in terms of the eigenvalues and projectors of H0,

1

E −H0

=
∑

kα

|kα〉〈kα|

E − ǫk
. (7)

The resulting expression, however, is meaningless if the exact eigenvalue E should equal any of the

unperturbed eigenvalues ǫk. In that case, one or more denominators vanish, indicating that E −H0

does not possess an inverse. Even if none of the denominators vanishes, nevertheless the exact

eigenvalue E is presumably close to the unperturbed eigenvalue ǫn, and therefore the terms k = n

in Eq. (7) are large (and these terms diverge at λ = 0, where E = ǫn).

In order to avoid small or vanishing denominators, and to work with operators that are guar-

anteed to be well defined, we define a new operator R which is Eq. (7) with the terms k = n

suppressed:

R =
∑

k 6=n
α

|kα〉〈kα|

E − ǫk
. (8)
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The operator R is closely related to the Green’s operators that we shall consider later in the course,

when we take up scattering theory.

It is possible that E−ǫn is not the only small or vanishing denominator in Eq. (7). For example,

if there are other unperturbed energy levels ǫk lying close to ǫn, then the perturbation could push

the exact energy E near to or past some of these other levels, and then other small denominators

would result in Eq. (7). This will certainly happen if the perturbation is large enough. For the time

being we will assume this does not happen, so that Eq. (8) is free of small denominators. This is

the situation illustrated in Fig. 1. When this is not the case we shall refer to “nearly degenerate

perturbation theory,” which is discussed in Sec. 7.

The operator R satisfies

PR = RP = 0,

QR = RQ = R,
(9)

and

R(E −H0) = (E −H0)R = Q. (10)

These equations show that R vanishes on the subspace Hn, while it is the inverse of E −H0 on the

subspace H⊥
n . Note that Q is just the identity operator on H⊥

n .

4. A series for |ψ〉 in terms of P |ψ〉

We return now to Eq. (6) and multiply through by R, using Eq. (10). This gives

Q|ψ〉 = λRH1|ψ〉, (11)

which expresses the “hard” part of the exact eigenstate Q|ψ〉 in terms of the total exact eigenstate

|ψ〉. To turn this into something more useful, we first add P |ψ〉 to both sides, obtaining

|ψ〉 = P |ψ〉+ λRH1|ψ〉. (12)

This expresses the exact eigenket |ψ〉 in terms of its projections ontoHn andH⊥
n , of which the second

term is a small correction. It is not an explicit solution for |ψ〉 since |ψ〉 occurs on the right hand

side, but it can be converted into a power series solution by a method of successive approximation.

In particular, note that if we neglect the second term in Eq. (12), which is of order λ, we obtain

|ψ〉 = P |ψ〉, which is correct to lowest order. To improve on the approximation, we substitute the

left hand side of Eq. (12) into the second term on the right hand side, obtaining,

|ψ〉 = P |ψ〉+ λRH1P |ψ〉+ λ2RH1RH1|ψ〉, (13)

which is still an exact equation. Now all terms on the right hand side except the last one involve

the “easy” part P |ψ〉 of the exact eigenstate, and only the final term, which is second order in the

perturbation, involves |ψ〉. If we neglect that term, we obtain an expression for |ψ〉 in terms of P |ψ〉

that is valid to first order in λ. Continuing this way, we can substitute the left hand side of Eq. (12)
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into the last term in Eq. (13), to push the hard term to fourth order in λ, etc. The result is a formal

power series for the solution |ψ〉 in terms of the easy part P |ψ〉.

Another way to get the same thing is to rearrange Eq. (12),

(1 − λRH1)|ψ〉 = P |ψ〉, (14)

so that

|ψ〉 =
( 1

1− λRH1

)

P |ψ〉. (15)

The inverse operator is then easily expanded in a series,

|ψ〉 =

∞
∑

s=0

λs(RH1)
sP |ψ〉

= P |ψ〉+ λRH1P |ψ〉+ λ2RH1RH1P |ψ〉+ . . . . (16)

This is the basic series out of which all the results of perturbation theory are constructed. The series

might not converge, but in perturbation theory we do not necessarily need convergent series.

5. Nondegenerate Perturbation Theory

In nondegenerate perturbation theory the level ǫn of H0 is nondegenerate. Then the index α

is not needed for the level ǫn, and we can write simply |n〉 for the corresponding eigenstate. We

retain α for the other levels k 6= n, since these may still be degenerate. Then since the space Hn

is 1-dimensional and is spanned by |n〉, we must have P |ψ〉 = c|n〉, where c is some constant. It is

obvious from Fig. 2 that |ψ〉 and P |ψ〉 cannot both be normalized, since one is the base and the

other the hypotenuse of a right triangle. In the following it is convenient to choose the normalization

and phase of |ψ〉 so that c = 1. Thus we have

P |ψ〉 = |n〉, (17)

where we assume that |n〉 and the other unperturbed eigenstates are normalized. This is the most

convenient normalization convention for nondegenerate perturbation theory, but it means that |ψ〉

is not normalized, in fact from Fig. 2 it is clear that 〈ψ|ψ〉 > 1, since the hypoteneuse is longer than

the base. After we are done with the perturbation expansion, we are free to normalize |ψ〉 in the

usual way. With this normalization convention, we have

〈n|ψ〉 = 1. (18)

Now the series (16) becomes

|ψ〉 =

∞
∑

s=0

λs(RH1)
s|n〉

= |n〉+ λRH1|n〉+ λ2RH1RH1|n〉+ . . .
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= |n〉+ λ
∑

k 6=n
α

|kα〉
〈kα|H1|n〉

E − ǫk

+ λ2
∑

k 6=n
α

∑

k′ 6=n
α′

|kα〉
〈kα|H1|k

′α′〉〈k′α′|H1|n〉

(E − ǫk)(E − ǫk′)
+ . . . (19)

which expresses the exact eigenket |ψ〉 as an infinite series in terms of the unperturbed eigenket

|n〉. However, the operator R still involves the unknown energy level E, which appears in the

denominators, so Eq. (19) is still not an explicit solution for the exact eigenket |ψ〉.

To find an equation for E, we multiply Eq. (6) on the left by 〈n| and use Eq. (18) to get

〈n|(E −H0)|ψ〉 = E − ǫn = λ〈n|H1|ψ〉, (20)

and then we substitute Eq. (19) into this. Thus we find

E = ǫn + λ〈n|H1|n〉+ λ2〈n|H1RH1|n〉+ λ3〈n|H1RH1RH1|n〉+ . . .

= ǫn + λ〈n|H1|n〉+ λ2
∑

k 6=n
α

〈n|H1|kα〉〈kα|H1|n〉

E − ǫk

+ λ3
∑

k 6=n
α

∑

k′ 6=n
α′

〈n|H1|kα〉〈kα|H1|k
′α′〉〈k′α′|H1|n〉

(E − ǫk)(E − ǫk′)
+ . . . . (21)

Since the unknown exact energy E still appears in the denominators on the right hand side of this

equation, this is not an explicit solution for E. But Eq. (21) does give E explicitly through O(λ),

E = ǫn + λ〈n|H1|n〉+O(λ2), (22)

which agrees with the usual result of Rayleigh-Schrödinger perturbation theory. If we want the

energy correct through O(λ2), we can substitute the zeroth order approximation for E, namely,

E = ǫn, into the denominator of the O(λ2) term in Eq. (21), whereupon we find

E = ǫn + λ〈n|H1|n〉+ λ2
∑

k 6=n
α

〈n|H1|kα〉〈kα|H1|n〉

ǫn − ǫk
+O(λ3), (23)

which agrees with Rayleigh-Schrödinger theory through O(λ2). Similarly, if we wish the energy

correct to O(λ3), we can substitute the first order expression (22) for E into the denominator of the

O(λ2) term in Eq. (21), and the zeroth order expression E = ǫn into the O(λ3) term, etc. When

the denominators are expanded out in powers of λ, the results of Rayleigh-Schrödinger perturbation

theory are recovered. At third order and beyond, the expressions of the Raleigh-Schrödinger theory

are more complicated than those of the Brillouin-Wigner theory, because of the extra terms that

come from expanding the denominators.
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Once the energy E has been determined in this manner, we can go back to Eq. (19) and obtain

the eigenkets. For example, through first order we have

|ψ〉 = |n〉+ λ
∑

k 6=n
α

|kα〉
〈kα|H1|n〉

ǫn − ǫk
+O(λ2), (24)

which again is the usual result from Rayleigh-Schrödinger perturbation theory.

6. Degenerate Perturbation Theory

In the case that the unperturbed energy level ǫn is degenerate, the projection of the exact

eigenket |ψ〉 onto Hn must be a linear combination of the unperturbed eigenkets |nα〉,

P |ψ〉 =
∑

α

|nα〉cα, (25)

where cα are the expansion coefficients. Since Q|ψ〉 is orthogonal to all the kets |nα〉, we have

〈nα|P |ψ〉 = 〈nα|ψ〉 = cα. (26)

To obtain an equation for the cα’s, we multiply Eq. (6) on the left by 〈nα| and use Eq. (26) to

obtain,

〈nα|(E −H0)|ψ〉 = (E − ǫn)cα = λ〈nα|H1|ψ〉. (27)

We substitute Eq. (16) into this, using Eq. (25) for P |ψ〉, and we find

(E − ǫn)cα =
∑

β

[

λ〈nα|H1|nβ〉+ λ2〈nα|H1RH1|nβ〉+ . . .
]

cβ

=
∑

β

[

λ〈nα|H1|nβ〉+ λ2
∑

k 6=n
γ

〈nα|H1|kγ〉〈kγ|H1|nβ〉

E − ǫk
+ . . .

]

cβ. (28)

This equation must be solved simultaneously for the eigenvalues E and the unknown expansion

coefficients cα.

We see that the expansion coefficients cα, which determine P |ψ〉 by Eq. (25), are the eigenvectors

of a g × g matrix, where g is the degeneracy of the unperturbed eigenvalue ǫn, and that the energy

shifts E−ǫn are the eigenvalues. But this is not the standard problem of determining the eigenvalues

and eigenvectors of a matrix, because the unknown energies E appear not only on the left-hand side

but also in the denominators in the second and higher order terms of the matrix.

In practice, however, the most common type of problem is one in which we desire the energy

shifts to first order in λ. We can find these by truncating the series in Eq. (28) at first order,

whereupon the energy shifts E − ǫn are the eigenvalues of the matrix 〈nα|H1|nβ〉, that is, they

are the eigenvalues of the matrix of the perturbing Hamiltonian inside the degenerate eigenspace of

unperturbed system. At this order there are no energy denominators to worry about and we can
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just diagonalize the matrix. Also, the eigenvectors cα corresponding to the energy shifts determine

P |ψ〉 via Eq. (25), so that the perturbed eigenkets are known to zeroth order. In many applications

this is sufficient (see, for example, the treatmant of the Stark effect on the n = 2 levels of hydrogen

in Sec. 23.12).

The first order matrix 〈nα|H1|nβ〉 may or may not have degeneracies itself. If it does not, then

all degeneracies are lifted at first order; if it does, the remaining degeneracies may be lifted at a

higher order, or may persist to all orders. Degeneracies that persist to all orders are almost always

due to some symmetry of the system, which can usually be recognized at the outset.

To proceed to second order, we may substitute the zeroth order solution E = ǫn into the denom-

inators of the second order term in Eq. (28) and truncate the series at this order. We then obtain

a new eigenvalue-eigenvector problem for the unknown energy corrections E − ǫn and coefficients

cα, which differs from the one we had at first order by the addition of a second order matrix as a

correction to the matrix 〈nα|H1|nβ〉 that we had at first order. We can evaluate the eigenvalues

and eigenvectors of the sum of these two matrices by standard matrix techniques, or we can regard

the new eigenvalue-eigenvector problem as a new problem in bound state perturbation theory, in

which the first order matrix 〈nα|H1|nβ〉 plays the role of a new unperturbed Hamiltonian, say, H̃0,

and the second order matrix plays the role of a new perturbation, say, H̃1. We will have to use

either the nondegenerate or degenerate versions of this theory, depending on whether or not all

degeneracies of the original Hamiltonian H0 were lifted at first order. In any case, once the energies

E and coefficients cα have been determined to some order, they can be substituted into Eq. (25) to

determine P |ψ〉.

Finally, once E and P |ψ〉 are known to some order, these can be substituted into Eq. (16) to

determine Q|ψ〉.

7. Nearly Degenerate Perturbation Theory

Now let us consider the case in which the unperturbed levels of H0, while not technically

degenerate, are close to one another. This often happens in practice, because levels are often grouped

into multiplets of closely spaced levels, which are more widely separated from other multiplets.

Suppose to be specific that two levels, say, ǫn and ǫm, are close enough to one another that first

order perturbations will push the exact level E close to or onto the unperturbed level ǫm. Then the

denominators in the k = m terms in Eq. (8) are small, and that equation cannot be used.

In this case we may proceed as follows. Let us choose choose some energy, call it ǭ, which is

close to ǫn and ǫm. It could, for example, be one of the energies ǫn or ǫm themselves, or it could

be their average, etc. Then let us take the original unperturbed Hamiltonian and perturbation and

rearrange them in the form,

H = H0 +H1 = H ′
0 +H ′

1, (29)
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where

H0 =
∑

kα

ǫk |kα〉〈kα|, (30)

H ′
0 =

∑

k 6=n,m
α

ǫk |kα〉〈kα| +
∑

k=n,m
α

ǭ |kα〉〈kα|, (31)

H ′
1 = H1 +

∑

k=n,m
α

(ǫk − ǭ)|kα〉〈kα|. (32)

In effect, we have merged the nearly degenerate levels ǫn, ǫm into a single degenerate level ǭ, and

thrown the correction terms into H ′
1. Then standard degenerate perturbation theory may be applied.

We will call this procedure “nearly degenerate perturbation theory.”

An equivalent approach to nearly degenerate perturbation theory is to exclude both sets of

terms k = n and k = m from the definition of R, and to proceed from there. Then R becomes the

inverse of E −H0 on the space orthogonal to Hn ⊕Hm.

Problems

1. This problem concerns the volume effect, which was discussed briefly in Sec. 17.8.

(a) Compute the shifts in the energy levels of a single-electron (hydrogen-like) atom of nuclear

charge Z due to the finite size of the nucleus. Treat the nucleus as a uniform sphere of charge of

radius r0A
1/3, where r0 = 1.3 × 10−13 cm and A is the number of nucleons. Express your answer

as some number of eV times some function of Z, A, and the quantum numbers of the atomic state.

Only treat those atomic states for which the effect is the largest. This is called the volume effect.

You may use

Rn0(0) = 2
( Z

na0

)3/2

, (33)

valid in hydrogen-like atoms, where a0 = h̄2/me2 is the Bohr radius.

The volume effect induces a splitting between the 2s and 2p levels of hydrogen. Compare this

to the Lamb shift (another splitting of the same two levels). The Lamb shift raises the 2s level

relative to the 2p level by approximately 1.05 GHz in frequency units.

(b) A muonic atom is one in which the electron has been replaced by a negative muon µ−, a particle

with a charge q = −e and a mass of 105 MeV/c2. Compute ∆E/E for the volume effect via first

order perturbation theory for the 1s level of muonic uranium (238U). Is this calculation reliable?

2. In this problem, set h̄ = 1 for simplicity. The Hamiltonian for a rigid body is

H =
1

2

(L2
1

I1
+
L2
2

I2
+
L2
3

I3

)

, (34)
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where (I1, I2, I3) are the principal moments of inertia and where (L1, L2, L3) = (Lx, Ly, Lz) are

angular momentum operators satisfying the commutation relations,

[Li, Lj] = i ǫijk Lk. (35)

You may assume that the angular momentum takes on only integer values. The Hamiltonian (34)

describes the rotational spectrum of molecules. Physically, the quantities Li are the negatives of the

components of the angular momentum with respect to the body frame.

In the case of a spherical top, such as methane (CH4), we have I1 = I2 = I3 = I. The

Hamiltonian is

H =
L2

2I
, (36)

and the energy levels are

Eℓ =
ℓ(ℓ+ 1)

2I
, (37)

which is (2ℓ+ 1)-fold degenerate since Eℓ is independent of m.

In the case of a symmetric top such as ammonia(NH3), we have I1 = I2 = I⊥ 6= I3. The

Hamiltonian is

H =
L2 − L2

3

2I⊥
+
L2
3

2I3
, (38)

and the energy levels are

Eℓm = A+Bm2, (39)

where

A =
ℓ(ℓ+ 1)

2I⊥
, B =

1

2

( 1

I3
−

1

I⊥

)

, (40)

and where m is the usual quantum number of Lz.

Now consider the case of a slightly asymmetric top. (Water is an example of an asymmetric top

molecule.) Let
1

I1
=

1 + ǫ

I⊥
,

1

I2
=

1− ǫ

I⊥
, (41)

where ǫ is small. These equations are equivalent to defining

I⊥ =
2I1I2
I1 + I2

, ǫ =
I2 − I1
I1 + I2

. (42)

Write the Hamiltonian as H = H0 + ǫH1, where H0 is the symmetric top Hamiltonian in Eq. (38).

You may find the following relations useful:

〈m|L2
+|m

′〉 = 〈m′|L2
−|m〉∗, (43a)

〈m|L2
+|m

′〉 = (−1)m+m′

〈−m′|L2
+|−m〉, (43b)

but if you use Eq. (43b) you must prove it.
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(a) Consider the state m = 0. Find the first order of perturbation theory at which the energy shift

does not vanish, and compute the energy shift at that order. In addition to the abbreviations (40),

use

C =
1

4I⊥
, (44)

and express your answer in terms of the constants A, B and C.

(b) Find the first order of perturbation theory at which the energy shifts for the m = ±1 levels do

not vanish, and compute them at that order.

(c) Find the first order of perturbation theory at which the energy shifts for the m = ±2 levels do

not vanish, and compute them at that order. Express your answer in terms of

X =
ℓ(ℓ− 1)(ℓ + 1)(ℓ+ 2)

4B
, Y =

(ℓ− 3)(ℓ− 2)(ℓ+ 3)(ℓ + 4)

12B
. (45)

Notice the appearance of a sum over “intermediate states.”

(d) What order of perturbation theory do you have to go to in order to find the first nonvanishing

correction to the energy in the case of m = ±3? m = ±4?


