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Notes 15

Orbital Angular Momentum and Spherical Harmonics†

1. Introduction

In Notes 13, we worked out the general theory of the representations of the angular momentum

operators J and the corresponding rotation operators. That theory made no assumptions about the

kind of system upon which the angular momentum and rotation operators act, for example, whether

it is a spin system or has spatial degrees of freedom, whether single particle or multiparticle, whether

nonrelativistic or relativistic, etc., because most of the theory of rotations is independent of those

details. We did work through the specific case of spin- 1
2
systems in detail in Notes 12. In this set of

notes we consider another important example of the theory of rotations, namely, a system consisting

of a single particle moving in three-dimensional space. We assume either that the particle is spinless,

or that the spin degrees of freedom can be ignored.

For most of these notes we make no assumptions about the Hamiltonian governing the single

particle, but the theory of rotations is most useful in the case that the particle is moving in a central

force field, that is, one for which the potential V = V (r) is a function of the radius r only. We will

discuss central force problems later.

In these notes we follow the usual custom in the physics literature of denoting the orbital

angular momentum by L instead of the general notation J used earlier. Similarly, we use the

quantum number ℓ instead of j.

2. Rotation Operators for Spatial Degrees of Freedom

The wave function for a spinless particle in three dimensions can be written

ψ(x) = 〈x|ψ〉, (1)

where |ψ〉 is the state vector and |x〉 are the position eigenkets. The general relation of such wave

functions to the measurement postulates was laid out in Notes 4; in particular, we are assuming

that the three components of the position vector x by themselves form a complete set of commuting

observables, so that the position eigenkets |x〉 form a continuous basis for the Hilbert space of

physical states.

† Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/1920/221.html.
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Introductory courses on quantum mechanics usually define the orbital angular momentum of

a single particle as L = x×p. This formula is borrowed from classical mechanics, where x×p is

(usually, not always) the angular momentum of a single particle moving in three-dimensional space.

In this course, however, angular momentum is defined as the generator of rotations, as explained in

Notes 12 and 13. Therefore we begin with a definition of rotation operators on our single particle

system, and then derive their generators.

Let us recall that we defined translation operators by

T (a)|x〉 = |x+ a〉, (2)

where a is a displacement vector. This is Eq. (4.21). This definition makes sense, because if the

particle is known to lie in a small region around position x, then the translated quantum state must

mean the particle is known to lie in a small region around x+ a. This is just what we mean by the

active point of view in applying translations.

Similarly, let R ∈ SO(3) be a proper rotation, and define an operator U(R) by

U(R)|x〉 = |Rx〉. (3)

This definition is physically reasonable, because the position eigenket |x〉 is the state of the system

after a measurement of the position operator has yielded the value x, while |Rx〉 is the state after

such a measurement has given the value Rx. For example, position can be measured by passing

particle through a small hole in a screen, and if we rotate the screen so that the hole moves from x

to Rx, then it is logical to call the state produced by the rotated measuring apparatus the rotated

state.

This argument does not specify the phase of the rotated state, however, and if we were to worry

about this we would insert a phase factor on the right hand side of Eq. (3) that would depend

on both x and R. Similar concerns could also be raised when defining the translation operators.

We will ignore this possible complication as it turns out to be unnecessary in kinetic-plus-potential

problems, and we will just work with the definition (3). Problems with magnetic fields, however,

force us to think about those phase factors more carefully. This could be foreseen by the fact that a

gauge transformation, insofar as its effect on wave functions is concerned, is equivalent to a change

in the phase conventions for the position eigenkets.

The definition (3) of the rotation operators is provisional until we have demonstrated several

things. First, we note that Eq. (3) actually does specify the operator U(R), because it gives the

action of that operator on a set of basis vectors. By linearity, the action of U(R) on an arbitrary

vector is thereby specified. Next, we note that the definition implies that U(R) forms a representation

of the rotation group SO(3), that is,

U(R1)U(R2) = U(R1R2). (4)

This follows directly from the definition, since

U(R1)U(R2)|x〉 = U(R1)|R2x〉 = |R1R2x〉 = U(R1R2)|x〉. (5)
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Equation (4) also implies

U(I) = 1 (6)

and

U(R−1) = U(R)−1. (7)

Next we work out the effect of U(R) on a wave function. We start with

|ψ〉 =
∫

d3x |x〉〈x|ψ〉 =
∫

d3x |x〉ψ(x), (8)

expanding an arbitrary state |ψ〉 in terms of the position eigenbasis. Next we apply U(R) to both

sides, writing

|ψ′〉 = U(R)|ψ〉 (9)

for the rotated state. This gives

|ψ′〉 =
∫

d3x |Rx〉ψ(x). (10)

We now change variables in the integral, writing x′ = Rx, so that

d3x′ = (detR)d3x = d3x, (11)

since detR = 1. Thus we find

|ψ′〉 =
∫

d3x |x〉ψ(R−1x), (12)

where we have dropped the prime on the dummy variable of integration.

We see that the wave function of the rotated state |ψ′〉 is given by

ψ′(x) =
(

U(R)ψ
)

(x) = ψ(R−1x), (13)

where we use the notation U(R)ψ to mean the wave function ψ′ of the rotated state |ψ′〉. This may

be compared to the corresponding formula in the case of translations,

(

T (a)ψ
)

(x) = ψ(x − a), (14)

which is a 3-dimensional version of Eq. (4.23). In both Eqs (13) and (14), the transformed wave

function, evaluated at some point, is the original wave function evaluated at the inverse transformed

point. As explained in Sec. 4.3, a mnemonic for remembering this is to write x′ = Rx for the “old”

and “new” points x and x′, respectively, and then to say, the value of the old wave function at the

old point is equal to the value of the new wave function at the new point, that is,

ψ′(x′) = ψ(x). (15)

This rule is necessary in the active point of view. For example, if the old wave function ψ(x) has

a large concentration of probability around a point x0, then the new, rotated wave function must

have a large concentration around the actively rotated point Rx0. See Fig. 4.1 for an illustration in

the case of translations.
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It is now easy to show that the operators U(R) are unitary. We simply compute the square

norm of the new wave function,
∫

d3x |ψ′(x)|2 =

∫

d3x |ψ(R−1x)|2 =

∫

d3x |ψ(x)|2, (16)

where in the last step we have performed a change of variables of integration, x′ = R
−1x, and then

dropped the prime. We see that the norm of an arbitrary state is preserved by U(R), which is

therefore unitary.

In summary, we have found a representation of the classical rotations acting on the Hilbert space

of our quantum mechanical system by means of unitary operators. This is precisely the starting

point for the theory laid out in Notes 13. Notice by the way that the representation is single-valued,

that is, there is only one unitary operator U(R) for each R. This means that of the possible values for

the angular momentum quantum number shown in Eq. (13.32), the half-integer values cannot occur,

since they lead to double-valued representations. That is, ℓ can only take on the values {0, 1, 2, . . .}.

3. The Orbital Angular Momentum L

We define the orbital angular momentum L as the generators of our rotation operators U(R).

We can find L explicitly by working with infinitesimal rotations. Let us write such a rotation in

axis-angle form,

R(n̂, θ) = I+ θn̂ · J, (17)

where θ ≪ 1. The corresponding unitary operator is

U(n̂, θ) = 1− i

h̄
θn̂ · L, (18)

which is the definition of L. See Eqs. (13.2) and (13.3).

We substitute these infinitesimal rotations into Eq. (13). On the right we will need R
−1, which

is given by

R(n̂, θ)−1 = I− θn̂ · J, (19)

that is, Eq. (17) with θ → −θ. Then Eq. (13) becomes

(

1− i

h̄
θn̂ · L

)

ψ(x) = ψ
(

(I− θn̂ · J)x
)

= ψ(x− θn̂×x) = ψ(x)− θ(n̂×x) · ∇ψ, (20)

where we have expanded the right hand side out to first order in θ. The leading order terms cancel,

and θ cancels from the first order terms, which can be written as

(n̂ · L)ψ = −ih̄(n̂×x) · ∇ψ = (n̂×x) · pψ = n̂ · (x×p)ψ, (21)

where we have introduced the momentum operator p which is −ih̄∇ when acting on wave functions

ψ(x). Since n̂ and ψ are arbitrary, Eq. (21) implies

L = x×p. (22)
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Our definition (3) of the rotation operators gives a definition of angular momentum that coincides

with the usual definition of orbital angular momentum in quantum mechanics.

According to the theory presented in Notes 12 and 13, the components of L must satisfy the

commutation relations,

[Li, Lj] = ih̄ ǫijk Lk. (23)

That they do so is easily verified from the definition (22) (if it were not true, there would be

something seriously wrong with the whole theory.) Next, following the theory laid out in Notes 13,

we work on constructing the standard angular momentum basis.

4. Orbital Angular Momentum Operators in Spherical Coordinates

The standard angular momentum basis is an eigenbasis of the operators (L2, Lz), with certain

phase and other conventions. Thus in the present case the basis vectors are wave functions indexed

by ℓ and m such that

L2ψℓm(x) = ℓ(ℓ+ 1)h̄2ψℓm(x),

Lzψℓm(x) = mh̄ψℓm(x).
(24)

The key to finding these wave functions is to first find the “stretched” states, that is, the states with

m = ℓ (the maximum value of m for a given ℓ). States for other values of m can then be generated

by applying lowering operators. The stretched wave functions ψℓℓ satisfy Eqs. (24) with m = ℓ.

The operator L2 is, however, somewhat difficult to work with. It turns out to be easier to specify

the stretched state as the eigenstate of Lz with eigenvalue ℓh̄ which is annihilated by the raising

operator. See Eq. (13.28). Thus the stretched state satisfies

Lzψℓℓ(x) = ℓh̄ ψℓℓ(x), (25)

L+ψℓℓ(x) = 0. (26)

These equations are most conveniently solved in spherical coordinates.

Writing out the three components of L as differential operators in rectangular coordinates,

we can apply the chain rule to transform them to spherical coordinates. The transformation is

straightforward but requires some algebra. See the Jacobian matrices (D.24) and (D.25). The

results are

Lx = −ih̄
(

y
∂

∂z
− z ∂

∂y

)

= −ih̄
(

− sinφ
∂

∂θ
− cot θ cosφ

∂

∂φ

)

,

Ly = −ih̄
(

z
∂

∂x
− x ∂

∂z

)

= −ih̄
(

cosφ
∂

∂θ
− cot θ sinφ

∂

∂φ

)

,

Lz = −ih̄
(

x
∂

∂y
− y ∂

∂x

)

= −ih̄ ∂

∂φ
.

(27)

The component Lz is particularly simple in spherical coordinates, and it is not hard to see why: Lz

is the generator of rotations about the z-axis, and φ is the azimuthal angle. The usual spherical
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coordinate system singles out the z-axis for special treatment, which is why the operators Lx and

Ly are more complicated.

Next we compute the raising and lowering operators,

L± = Lx ± iLy = −ih̄ e±iφ
(

±i ∂
∂θ
− cot θ

∂

∂φ

)

, (28)

and the Casimir operator L2,

L2 =
1

2

(

L+L− + L−L+

)

+ L2
z = −h̄2

[ 1

sin θ

∂

∂θ

(

sin θ
∂

∂θ

)

+
1

sin2 θ

∂2

∂φ2

]

. (29)

At this point we notice the relation of L2 to the Laplacian operator,

p2ψ = −h̄2∇2ψ = −h̄2 1

r2
∂

∂r

(

r2
∂ψ

∂r

)

+
L2

r2
ψ. (30)

See Eq. (D.23). We will come back to this formula later, but for now we are more interested in

angular momentum than kinetic energy.

A striking feature about the operators L in spherical components is that the radial differential

operator ∂/∂r does not occur in them (hence it does not occur in any function of L, either, such

as L2, L±, or the rotation operators exp(−iθn̂ · L/h̄)). The geometrical reason is that rotations

in physical space change the direction of vectors, but not their magnitude; therefore the motion of

the tip of a given vector takes place on the surface of a sphere. This is also true of infinitesimal

rotations, which connect nearby points of the same r value but different θ and φ values. Therefore

the components of L, in terms of which infinitesimal rotations are expressed, do not involve any

differentiation with respect to r.

5. The Hilbert Space of Wave Functions on a Sphere

Because of this fact, we can think of the angular momentum operators as acting on functions

f(θ, φ) defined on the sphere, rather than on functions ψ(x) = ψ(r, θ, φ) defined in the full 3-

dimensional space. The radius of the sphere is unimportant (since when using it we are only

interested the angular dependence), so we can take it to be a sphere of unit radius. This is often a

useful point of view, and we will now make a small digression for notation for functions defined on

the unit sphere.

We denote a point on the unit sphere either by (θ, φ) or by r̂, indicating a unit vector based at

the origin whose tip lies on the unit sphere. For example, we will write f(θ, φ) = f(r̂). We will adopt

a Dirac bra-ket notation for functions on the unit sphere, for example, making the association,

f(θ, φ) = f(r̂)←→ |f〉. (31)

We define the scalar product of two such functions by

〈f |g〉 =
∫

dΩ f(θ, φ)∗g(θ, φ), (32)
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where dΩ = sin θ dθ dφ. This makes the space of normalizable wave functions on the unit sphere

into a Hilbert space. We define a δ-function on the unit sphere by

δθ0φ0
(θ, φ) =

δ(θ − θ0)δ(φ − φ0)
sin θ

, (33)

which is a function concentrated at the point (θ0, φ0). Then
∫

dΩ δθ0φ0
(θ, φ)f(θ, φ) = f(θ0, φ0), (34)

for any function f . We associate this δ-function with a ket by

δθ0φ0
(θ, φ)↔ |r̂0〉, (35)

where (θ0, φ0) = r̂0. Then we have

f(θ, φ) = f(r̂) = 〈r̂|f〉. (36)

6. The Standard Angular Momentum Basis for Orbital Angular Momentum

We return to Eqs. (25) and (26) for the stretched wave function ψℓℓ(r, θ, φ), which we express

in spherical coordinates. First, the Lz equation (25) can be written,

−ih̄∂ψ(r, θ, φ)
∂φ

= ℓh̄ ψ(r, θ, φ), (37)

which has the general solution

ψℓℓ(r, θ, φ) = Fℓℓ(r, θ)e
iℓφ, (38)

where Fℓℓ(r, θ) is an arbitrary function. By the theory of Notes 13 we know that ℓ must be a

nonnegative integer or half-integer, but in fact Eq. (38) shows that ℓ must be an integer since

otherwise the wave function ψℓℓ would not be single-valued. Wave functions in quantum mechanics

are single-valued functions of position because ψ(x) is just the expansion of the state |ψ〉 with respect

to the position eigenbasis, and the basis kets |x〉 are single-valued. This is the same conclusion we

reached earlier at the end of Sec. 2. Thus we have determined the φ-dependence of the function

ψℓℓ(r, θ, φ).

To get the θ-dependence, we call on the L+-equation (26), using Eq. (28) for L+ in spherical

coordinates. Applying this to the form (38) for ψℓℓ, the φ-derivatives can be carried out, whereupon

we find

−ih̄eiφ
(

i
∂

∂θ
− iℓ cot θ

)

Fℓℓ(r, θ)e
iℓφ = 0, (39)

or, canceling various factors,
∂Fℓℓ(r, θ)

∂θ
= ℓ cot θFℓℓ(r, θ). (40)

This has the solution,

Fℓℓ(r, θ) = u(r) sinℓ θ, (41)
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where u(r) is an arbitrary function of r, or

ψℓℓ(r, θ, φ) = u(r) sinℓ θ eiℓφ. (42)

These are the stretched wave functions.

We see that the simultaneous eigenfunctions of L2 and Lz are indeed degenerate, since any radial

function u(r) may appear in Eq. (42). In order to resolve these degeneracies, we may introduce an

arbitrarily chosen basis {un(r)} of radial wave functions, and write

ψnℓℓ(r, θ, φ) = un(r) sin
ℓ θeiℓφ. (43)

The index n we use here serves the same purpose as the index γ used in Notes 13; it labels an

arbitrarily chosen orthonormal basis in the stretched eigenspace. We see that the multiplicity of the

integral values of ℓ on the Hilbert space of wave function ψ(x) is infinity.

Another approach is simply to throw away the radial variables, and work on the unit sphere.

On the Hilbert space of wave functions f(θ, φ) on the unit sphere, the simultaneous stretched eigen-

function of L2 and Lz is

fℓℓ(θ, φ) = sinℓ θ eiℓφ, (44)

and it is nondegenerate. Therefore, on this Hilbert space, the multiplicity Nℓ is zero for half-integral

ℓ, and unity for integral ℓ. When we normalize fℓℓ using the rule

〈f |f〉 =
∫

dΩ |f |2 = 1, (45)

we find

Yℓℓ(θ, φ) =
(−1)ℓ
2ℓℓ!

√

(2ℓ+ 1)!

4π
sinℓ θ eiℓφ, (46)

where we have identified the normalized fℓℓ with the stretched spherical harmonic Yℓℓ, and where

we have introduced the conventional phase factor (−1)ℓ. Recall that in the general theory developed

in Notes 13, the phase of the stretched state |jj〉 was left arbitrary.
To obtain the states corresponding to other values of m, we can apply lowering operators. We

use Eq. (13.43), making the replacements, j → ℓ, J− → L−. By induction one can show that

(L−

h̄

)ℓ−m

sinℓ θeiℓφ =
eimφ

sinm θ

[ d

d(cos θ)

]ℓ−m

sin2ℓ θ, (47)

and altogether we find

Yℓm(θ, φ) =
(−1)ℓ
2ℓℓ!

√

2ℓ+ 1

4π

(ℓ+m)!

(ℓ−m)!

eimφ

sinm θ

[ d

d(cos θ)

]ℓ−m

sin2ℓ θ. (48)

This formula is valid for all m in the range, −ℓ ≤ m ≤ +ℓ.

Equation (48) can be expressed in terms of Legendre polynomials and associated Legendre

functions. First we consider the case m = 0, and call on the Rodriguez formula for the Legendre

polynomial Pℓ(x) [see Abramowitz and Stegun, Eq. (8.6.18)],

Pℓ(x) =
(−1)ℓ
2ℓℓ!

dℓ

dxℓ
(1− x2)ℓ, (49)
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where we set

x = cos θ. (50)

Then Eq. (48) becomes

Yℓ0(θ, φ) =

√

2ℓ+ 1

4π
Pℓ(cos θ). (51)

The choice of the phase factor (−1)ℓ in Eq. (46) was designed to make Yℓ0 real and positive at the

north pole (cos θ = 1); this follows from Eq. (75).

Now let us consider the case m ≥ 0. We can construct the Yℓm for this case by applying raising

operators to the state Yℓ0. Using induction on Eq. (13.48a), we obtain

|ℓm〉 =
√

(ℓ−m)!

(ℓ+m)!

(L+

h̄

)m

|ℓ0〉. (52)

(This formula only works for integer angular momentum, since the value m = 0 is possible only in

this case.) Next we use induction to obtain

(L+

h̄

)m

Pℓ(cos θ) = (−1)m sinm θ eimφ
[ d

d(cos θ)

]m

Pℓ(cos θ)

= (−1)meimφ Pℓm(cos θ), (53)

where we have introduced the associated Legendre function, defined by

Pℓm(x) = (1− x2)m/2 d
mPℓ(x)

dxm
. (54)

[See Abramowitz and Stegun, Eq. (8.6.6), and beware of the difference between their function Pm
n

and Pnm, see the section on notation on p. 332.] Altogether, for m ≥ 0 we have

Yℓm(θ, φ) = (−1)m
√

2ℓ+ 1

4π

(ℓ−m)!

(ℓ+m)!
eimφ Pℓm(cos θ). (55)

For the case m < 0, we go back to Eq. (48), we set m = −|m|, and we use Eqs. (49) and (54).

The result is

Yℓ,−|m|(θ, φ) =

√

2ℓ+ 1

4π

(ℓ − |m|)!
(ℓ + |m|)! e

−i|m|φ Pℓ,|m|(cos θ), (56)

which is equivalent to

Yℓ,−m(θ, φ) = (−1)mYℓm(θ, φ)∗, (57)

valid for any value of m.

In summary, the standard angular momentum basis for the space of wave functions f(θ, φ) de-

fined on the unit sphere consists of the Yℓm’s. The irreducible subspaces are the (2ℓ+1)-dimensional

spaces of wave functions spanned by the Yℓm’s for fixed ℓ with m = −ℓ, . . . ,+ℓ. There is precisely

one such subspace for each integer value of ℓ in the Hilbert space of wave functions on the sphere. For

the Hilbert space of wave functions on three-dimensional space, there is an infinite set of irreducible
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subspaces for each integer value of ℓ, that is, the spaces of wave functions spanned by un(r)Yℓm(θ, φ)

for fixed n and ℓ.

Notice that the theory of the Yℓm’s is completely founded on the general theory of raising and

lowering operators as laid out in Notes 13, and that even the phase conventions are the standard

ones presented in those notes. Only the phase (−1)ℓ of the stretched state in Eq. (46) goes beyond

the conventions established in those notes.

7. Table of Yℓm’s

We present a short table of Yℓm’s:

Y00 =
1√
4π
, Y11 = −

√

3

8π
sin θ eiφ, Y10 =

√

3

4π
cos θ, Y1,−1 =

√

3

8π
sin θ e−iφ,

Y22 =

√

15

32π
sin2 θ e2iφ, Y21 = −

√

15

8π
sin θ cos θ eiφ, Y20 =

√

5

16π
(3 cos2 θ − 1),

Y2,−1 =

√

15

8π
sin θ cos θ e−iφ, Y2,−2 =

√

15

32π
sin2 θ e−2iφ.

(58)

8. Yℓm’s in Cartesian Coordinates

Sometimes versions of the spherical harmonics in Cartesian coordinates are useful. If we multiply

Eq. (46) by rℓ, we obtain

rℓ Yℓℓ(θ, φ) =
(−1)ℓ
2ℓ ℓ!

√

(2ℓ+ 1)!

4π
(x+ iy)ℓ. (59)

This is a homogeneous polynomial in x, y and z of degree ℓ. We can create the Yℓm’s for other

values of m by applying the lowering operator L−, which in Cartesian coordinates is

L− = Lx − iLy = −ih̄
[(

y
∂

∂z
− z ∂

∂y

)

− i
(

z
∂

∂x
− x ∂

∂z

)]

. (60)

While carrying out the derivatives might be complicated, notice that each derivative ∂/∂x, ∂/∂y,

∂/∂z, lowers the degree of the polynomial, while the multiplication by x, y or z raises it back. Thus

we see that rℓYℓm(θ, φ), when expressed in Cartesian coordinates, is a homogeneous polynomial in

x, y, and z of degree ℓ, for all m.

An important application of this fact is that under parity, which causes (x, y, z) to go into

(−x,−y,−z), the function Yℓm changes by (−1)ℓ. This is the parity of Yℓm, and hence of the

wavefunctions Rnℓ(r)Yℓm(θ, φ) that occur in central force problems.



Notes 15: Orbital Angular Momentum 11

9. Rotating Yℓm’s

There are several interesting and useful results that follow from applying rotation operators to

the Yℓm’s. It is often important to rotate the Yℓm’s, because by the very definition of the spherical

coordinates (θ, φ), a privileged role has been assigned to the z-axis. In addition, the z-axis has been

selected out again for a privileged role by the standard convention of working with eigenfunctions of

L2 and Lz. In many problems it is necessary to refer calculations to another axis, something that

can be done with rotation operators.

First let us write the ket |ℓm〉 to stand for the function Yℓm(θ, φ), regarded as a function defined

on the unit sphere, so that

Yℓm(r̂) = 〈r̂|ℓm〉. (61)

Since we have determined that Yℓm is the nondegenerate eigenfunction of L2 and Lz on the unit

sphere, we do not need any extra quantum numbers in |ℓm〉. We now apply a rotation operator

specified by R to a Yℓm and use Eq. (13). We have

(

U(R)Yℓm
)

(r̂) = Yℓm
(

R
−1r̂

)

= 〈r̂|U(R)|ℓm〉 =
∑

m′

〈r̂|ℓm′〉〈ℓm′|U(R)|ℓm〉, (62)

where in effect we rotate the Yℓm in two ways, once by rotating the argument in three-dimensional

space, and the other time by rotating it as a basis function in its irreducible subspace of Hilbert

space. The matrix element in the final expression is a D matrix, so we obtain

(

U(R)Yℓm
)

(r̂) = Yℓm(R−1r̂) =
∑

m′

Yℓm′(r̂)Dℓ
m′m(R). (63)

This may be recognized as a special case of Eq. (13.85).

Equation (63) gives Yℓm at one point on the sphere as a linear combination of other Yℓm’s, for

the same value of ℓ but all values of m, at another point on the sphere. The fact that the linear

combination does not involve other values of ℓ is due to the invariance of the irreducible subspace

spanned by the Yℓm’s for fixed ℓ but variable m, under the action of rotations.

Equation (63) can be used to express the values of the Yℓm’s at a point of interest in terms of

the their values at the north pole (a convenient reference point). To put this in convenient form, we

change notation in Eq. (63), and replace r̂ by ẑ, and replace R by R
−1. Then we write r̂ = Rẑ, so

that R is interpreted as a rotation that maps the ẑ-axis into some direction r̂ of interest. Then we

obtain,

Yℓm(r̂) =
∑

m′

Yℓm′(ẑ)Dℓ
m′m(R−1). (64)

If we write r̂ = (θ, φ) for the direction of interest, then a rotation that maps the ẑ-axis into this

direction is easily given in Euler angle form,

R(φ, θ, 0)ẑ = r̂, (65)

that is, with α = φ and β = θ, because the first two Euler angles were designed to specify the

direction of the rotated ẑ-axis. Also, the value of Yℓm at the north pole is especially simple, because
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all the associated Legendre functions Pℓm(cos θ) vanish at θ = 0 unless m = 0, and in that case we

have Pℓ(1) = 1. Therefore

Yℓm(ẑ) =

√

2ℓ+ 1

4π
δm0. (66)

Finally, we can use Eq. (13.71) to rewrite the matrix D(R−1), and Eq. (64) becomes,

Yℓm(θ, φ) =

√

2ℓ+ 1

4π
Dℓ∗

m0(φ, θ, 0).

(67)

In this way we have found a useful connection between the Yℓm’s and the D-matrices.

10. The Addition Theorem for Spherical Harmonics

We can use this to derive another nice result. Consider the following function defined on the

unit sphere:

f(θ, φ) = f(r̂) = Pℓ(cos θ) = Pℓ(r̂ · ẑ) =
√

4π

2ℓ+ 1
Yℓ0(r̂), (68)

where Pℓ is the usual Legendre polynomial and r̂ = (θ, φ) is some direction of interest. Now let us

rotate this function by some rotation specified by R. We have

(

U(R)f
)

(r̂) = f(R−1r̂) = Pℓ(R
−1r̂ · ẑ) = Pℓ(r̂ · Rẑ), (69)

where in the final step we use the fact that R−1 = R
t to transfer the rotation matrix from r̂ to ẑ in

the scalar product. Now we choose the matrix R to have the Euler angle form R(φ′, θ′, 0), so that

r̂′ = (θ′, φ′) = Rẑ, where r̂′ is another direction of interest (in addition to r̂). Then Eqs. (68) and

(69) become

Pℓ(r̂ · r̂′) =
√

4π

2ℓ+ 1
Yℓ0(R

−1r̂) =

√

4π

2ℓ+ 1

∑

m

Yℓm(r̂)Dℓ
m0(θ

′, φ′, 0), (70)

where we use Eq. (63) to expand the rotated Yℓm. Finally, we use Eq. (67) to write the result purely

in terms of Yℓm’s, and we have

Pℓ(r̂ · r̂′) =
4π

2ℓ+ 1

∑

m

Yℓm(θ, φ)Y ∗ℓm(θ′, φ′),

(71)

which is the (very useful) addition theorem for the spherical harmonics.

11. The Multipole Expansion in Electrostatics

We will now review the multipole expansion in electrostatics, which fits in well at this point in

the presentation and which will be of use several times in the course.
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We begin with the Legendre polynomials, which are defined by

1√
1− 2ux+ u2

=

∞
∑

ℓ=0

uℓ Pℓ(x), (72)

where the series converges for |u| < 1. That is, they are the coefficients of the expansion of the left-

hand side in powers of the parameter u. The left-hand side is considered the generating function of

the Legendre polynomials. Carrying out the expansion, we find the first few Legendre polynomials,

P0(x) = 1, P1(x) = x, P2(x) =
1

2
(3x2 − 1). (73)

Note that if we set x = 1 in Eq. (72) we obtain

1

1− u =
∞
∑

ℓ=0

uℓPℓ(1). (74)

Comparing the Taylor series expansion of the left-hand side with the series on the right, we find

Pℓ(1) = 1. (75)

This is essentially the standard normalization for the Legendre polynomials.

γ

x

y

z

x′ x

ρ(x′)

Fig. 1. The origin of a system of coordinates is located inside a localized charge distribution with density ρ. The
variable x′ runs over the charge distribution, while x is a field point at which the potential Φ is desired.

Now consider a localized charge distribution ρ, as in Fig. 1, with a field point x that is well

outside the distribution. The electrostatic potential at x is given by

Φ(x) =

∫

d3x′ ρ(x′)

|x− x′| (76)

[see Eq. (A.5)], where the variable of integration x′ runs over the charge distribution. Writing r = |x|
and r′ = |x′|, we have

|x− x′| =
√

r2 − 2x · x′ + r′2 = r
√

1− 2u cosγ + u2, (77)
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where u = r′/r < 1 and γ is the angle between the vectors x and x′, as shown in the figure. Then

using the expansion (72) we have

1

|x− x′| =
∞
∑

ℓ=0

r′ℓ

rℓ+1
Pℓ(cos γ) =

∑

ℓm

r′ℓ

rℓ+1

4π

2ℓ+ 1
Yℓm(θ, φ)Y ∗ℓm(θ′φ′), (78)

where in the last step we use the addition theorem (71), and where (rθφ) are the spherical coordinates

of x and (r′θ′φ′) are those of x′. This allows us to write the potential as

Φ(r, θ, φ) =

∞
∑

ℓ=0

√

4π

2ℓ+ 1

1

rℓ+1

∑

m

Yℓm(θ, φ)Cℓm, (79)

where the coefficients Cℓm characterize the charge distribution and are given by

Cℓm =

√

4π

2ℓ+ 1

∫

d3x′ ρ(x′) r′ℓ Y ∗ℓm(θ′, φ′). (80)

Since r′ℓY ∗ℓm(θ′, φ′) is a homogeneous polynomial in (x′, y′, z′) of degree ℓ (see Sec. 8), the coefficients

Cℓm are moments of degree ℓ of the charge distribution. Equation (79) is the multipole expansion

of the potential in spherical coordinates. The terms fall off with distance as 1/rℓ+1, so that at large

distances the first nonvanishing term dominates.

The multipole expansion in rectangular coordinates is also useful. Expanding 1/|x−x′| directly
in powers of x′, assuming r′ < r, we obtain

1

|x− x′| =
1

r
+

x′ · x
r3

+
1

2

∑

ij

x′ix
′
j

(3xixj − r2δij
r5

)

+ . . . . (81)

We substitute this into Eq. (76) and write the potential in terms of the contributions at various

orders by Φ =
∑

ℓΦℓ. At order ℓ = 0 we have

Φ0(x) =
q

r
, (82)

where q is the zeroth moment of the charge distribution, that is, it is the total charge,

q =

∫

d3x′ ρ(x′). (83)

At order ℓ = 1 we obtain

Φ1(x) =
d · x
r3

, (84)

where d is the first moment of the charge distribution, that is, it is the dipole moment vector,

d =

∫

d3x′ x′ρ(x′). (85)

As for the term ℓ = 2, we note first that the tensor 3xixj − r2δij which appears in Eq. (81) is

symmetric and traceless, and that it is contracted against x′ix
′
j which is symmetric but not traceless.

However, we can subtract the trace from x′ix
′
j without changing the result, since δij contracted
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against 3xixj − r2δij vanishes. This allows us to write the second order term in Eq. (81) more

symmetrically as

1

6

∑

ij

(3x′ix
′
j − r′2δij)

(3xixj − r2δij
r5

)

. (86)

Then the ℓ = 2 contribution to the potential can be written as

Φ2(x) =
1

6

∑

ij

Qij

(3xixj − r2δij
r5

)

, (87)

where Qij is the quadrupole moment tensor,

Qij =

∫

d3x′ ρ(x′)(3x′ix
′
j − r′2δij). (88)

Notice that Qij is also symmetric and traceless. Equations (82), (84) and (87) give the monopole,

dipole and quadrupole contributions to the potential, respectively, in rectangular coordinates.

By comparing the monopole term in rectangular coordinates to that in spherical coordinates,

we see that C00 = q, since Y00 = 1/
√
4π. The dipole and quadrupole terms will be compared in

Notes 19.

Finally, we note that sometimes the field point x is inside the charge distribution. In that case

it is convenient break the region of integration into the region r′ < r, where we expand in the ratio

r′/r, and the region r′ > r, where we expand in the ratio r/r′. The expansion is conveniently written

as

1

|x− x′| =
∞
∑

ℓ=0

rℓ<

rℓ+1
>

Pℓ(cos γ) =
∑

ℓm

4π

2ℓ+ 1

rℓ<

rℓ+1
>

Y ∗ℓm(θ′, φ′)Yℓm(θ, φ), (89)

where r< = min(r, r′) and r> = max(r, r′).

12. Orbital Angular Momentum in Multiparticle Systems

Consider now a system of n spinless particles moving in three-dimensional space. The basis

kets are |x1, . . . ,xn〉, and the wave functions are ψ(x1, . . . ,xn) = 〈x1, . . . ,xn|ψ〉. The obvious

generalization of the definition Eq. (3) of the rotation operators U(R) is

U(R)|x1, . . . ,xn〉 = |Rx1, . . . ,Rxn〉, (90)

or, in wave function language,

(Rψ)(x1, . . . ,xn) = ψ(R−1x1, . . . ,R
−1xn), (91)

as in Eq. (13). By considering infinitesimal rotations it is easy to work out the generator of rotations;

it is

L =

n
∑

i=1

Li =

n
∑

i=1

xi×pi. (92)
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The orbital angular momentum for the entire system is the sum of the orbital angular momenta for

the individual particles.

It may be of interest to rotate some of the particles and not others. For example, the operator

that rotates only particle i while leaving the others alone is

Ui(n̂, θ) = exp
(

− i
h̄
θn̂ · Li

)

. (93)

Such operators are useful when the system is invariant under rotations of the individual particles

(for example, in the central field approximation in atomic physics).

The standard angular momentum basis for a multiparticle system is best constructed by means

of coupling of angular momenta, a topic considered later.

Problems

1. Consider wave functions f(θ, φ) on the unit sphere, as in Sec. 5. Using the differential operators

in Sec. 4, find the simultaneous eigenfunction of L2 and Lz with eigenvalues 2h̄2 and h̄, respectively

(that is, the case ℓ = 1). Normalize this wave function but leave leave a phase factor that will

be determined later. Now apply L− twice to this state fill out the standard basis vectors in an

irreducible subspace. The wave functions are proportional to Y1m for m = 1, 0,−1. By requiring Y10

to be real and positive at the north pole, determine the phase. Compare your answers to a table of

Yℓm’s.

2. Some problems concerning orbital angular momentum in the momentum representation.

(a) Consider a spinless particle moving in three-dimensional space. It was shown Sec. 6 that the

standard angular momentum basis consists of wavefunctions of the form un(r)Yℓm(θ, φ), where

un(r) is an arbitrary basis of radial wave functions. The wave functions being referred to here are

configuration space wave functions, ψ(x) or ψ(r, θ, φ). Consider the wave functions φ(p) in the

momentum representation. Let (p, β, α) be spherical coordinates in momentum space, that is,

px = p sinβ cosα,

py = p sinβ sinα,

pz = p cosβ.

(94)

Find the form of the wavefunctions that make up the standard angular momentum basis in momen-

tum space.

(b) Let ψ(x) be a wave function in three dimensions, and let ψ′(x) be the rotated wave function cor-

responding to rotation matrix R ∈ SO(3). Use Eq. (13) and the usual expression for the momentum

space wave function,

φ(p) =

∫

d3x

(2πh̄)3/2
e−ip·x/h̄ ψ(x), (95)
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to find a relation between φ′(p) and φ(p).

(c) A useful formula in scattering theory is the expansion of a plane wave in terms of free particle

solutions of definite angular momentum. It is

eik·x =

∞
∑

ℓ=0

eiℓπ/2 (2ℓ+ 1)jℓ(kr)Pℓ(cos γ), (96)

where γ is the angle between x and k, where jℓ is a spherical Bessel function, and where Pℓ is a

Legendre polynomial.

Suppose ψ(x) = u(r)Yℓm(θ, φ). Show that φ(p) = v(p)Yℓm(β, α), and find a one-dimensional

integral transform connecting the radial functions u(r) and v(p).

3. A problem on the addition theorem for spherical harmonics.

(a) Suppose unitary operators U(R) on some Hilbert space satisfy the representation property,

Eq. (12.4). By taking matrix elements with respect to a standard angular momentum basis |jm〉,
translate that condition into an equivalent condition in terms of D-matrices.

(b) Show that the addition theorem for spherical harmonics, Eq. (71), is a special case of the

preceding result.


