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Notes 38

Adiabatic Invariance, the Geometric Phase,

and the Born-Oppenheimer Approximation†

A time-dependent system is said to be adiabatic if the time-dependence is slow. First we will

say a few words about adiabatic systems in classical mechanics. A simple example is a pendulum

with a slowly varying length. Let L be the length of the pendulum, so that the frequency is given

by

ω =

√

g

L
. (1)

When we say that the length is slowly varying, mean that L does not vary much on during a single

cycle of oscillation, or

L̇

L
≪ ω. (2)

We can write L = L(ǫt) to indicate this slow time dependence, where we think of ǫ as a small

parameter. Since ω is a function of L, we also have ω = ω(ǫt). Then for small angles θ of oscillation,

the equation of motion of the pendulum is

θ̈ + ω(ǫt)2θ = 0, (3)

which is that of a harmonic oscillator with slowly varying frequency. It is interesting that a treatment

of this equation when ǫ is small is mathematically the same as the treatment of the one-dimensional

Schrödinger equation when h̄ is small. That is, the method is WKB theory.

More generally, an adiabatic system in classical mechanics is (generally an oscillator) with slowly

time-dependent parameters. Neither the frequency nor the energy of the oscillator is conserved in

the adiabatic process, but there is an approximate conserved quantity,

I =
1

2π

∮

p dq, (4)

which is the action of the oscillator. The action is not exactly conserved, but it is conserved to higher

accuracy as the changes in the parameters are carried out more slowly. The action is what is called

an adiabatic invariant. As we will see below, the situation is similar in quantum mechanics; the

energy is not conserved, but there is an approximate conservation law, which is that of the quantum

number (in a sense to be made precise below). This makes sense, because we know that according to

the Bohr-Sommerfeld quantization rule, the quantum number is proportional to the classical action.

† Links to the other sets of notes can be found at:

http://bohr.physics.berkeley.edu/classes/221/1920/221.html.
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Let us consider a quantum Hamiltonian with a slow time-dependence, which we denote by

H = H(ǫt) = H(τ), (5)

where τ = ǫt. The ǫ serves to remind us that the time-dependence is slow. It also has a more formal

mathematical meaning, as follows. Let us suppose the Hamiltonian depends on certain parameters,

which we can imagine are under experimental control. One can think of the electric and magnetic

fields with which an atom or spinning particle interacts. Therefore by changing these parameters,

we can change the Hamiltonian, say, from some initial value H0 to some final value H1. Suppose

we change the Hamiltonian from H0 to H1, passing through some specified sequence of intermediate

Hamiltonians, in some time interval t = 0 to t = t1 = T . At the end of this time we can make various

physical measurements on our system. Now let us repeat exactly the same procedure, except we

carry out the changes in the Hamiltonian more slowly than before by some scale factor ǫ, so that the

changes take place over the time interval t = 0 to t = t1 = T/ǫ. The initial and final Hamiltonians

are still the same, as is the sequence of intermediate Hamiltonians, but the time taken to get to the

final Hamiltonian is longer by a factor of 1/ǫ. Then we can study how various quantities of interest,

such as the probability of finding the system in some state |n〉, scale with ǫ as ǫ → 0. If a quantity

scales as some power of ǫ, say, ǫa, then we will say that that quantity is O(ǫa). For example, the

elapsed time t1 is O(1/ǫ). For brevity, we will refer to a time of order 1/ǫ as “a long time.”

We imagine that the final Hamiltonian H1 differs from the initial Hamiltonian by some amount

which is of order unity, in the usual sense of that phrase in physics. For example, if we are changing

magnetic fields, perhaps the final magnetic field is twice as strong as the initial one. But the final

Hamiltonian is also order unity in the limiting sense defined in the preceding paragraph, since H1 is

independent of ǫ and therefore scales as ǫ0 = 1.

We will be interested in solving the time-dependent Schrödinger equation,

H(ǫt)|ψ(t)〉 = ih̄
∂

∂t
|ψ(t)〉, (6)

over a long time interval. Although the time-dependent Schrödinger equation is not separable in

time, nevertheless there is some advantage in introducing the instantaneous eigenkets and eigenvalues

of the Hamiltonian. That is, we write,

H(τ)|n(τ)〉 = En(τ)|n(τ)〉, (7)

where naturally the eigenvalues En and eigenkets |n〉 depend on τ since H itself does. The notation

|n(τ)〉 is somewhat illogical, since it is the ket and not the quantum number that is a function of τ ,

but we use it anyway since the more logical notation |n〉(τ) is awkward. Notice that since H changes

by an amount which is order unity in the (long) time interval of interest, so also do the eigenvalues

and eigenkets; for example, we may expect some final energy eigenfunction to look rather different

from the initial eigenfunction. The label n is the same, of course. The eigenvalues En are also

expected to change by an amount which is of order unity.
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We will assume that the spectrum of H is discrete and nondegenerate for all τ of interest. The

nondegeneracy assumption in particular seems a strong one, since even if H is nondegenerate at

t = 0, we might expect the energy levels En, which after all are functions of τ and are expected to

change by an amount which is of order unity, to cross one another in the course of time. Such a

crossing of course gives rise to a degeneracy. Nevertheless, we will pursue the consequences of the

nondegeneracy assumption because it leads to the simplest analysis of the adiabatic process, and

consider later what happens if levels become degenerate or nearly degenerate in the course of time.

Since the eigenkets |n〉 form a complete set, we can without loss of generality expand the exact

solution |ψ(t)〉 in terms of them. We write,

|ψ(t)〉 =
∑

n

cn(t)|n(τ)〉. (8)

Substituting this into the Schrödinger equation (6), we easily find the equation of evolution for the

unknown coefficients cn,

ċn = −
i

h̄
En(τ)cn(t)− ǫ

∑

m

〈n|
d

dτ
|m〉cm. (9)

This equation is exact. In the second term, the operator d/dτ is not an operator in the usual sense

(it is not a mapping of the ket space onto itself), but rather the matrix element shown is interpreted

as the scalar product of the bra 〈n| with the ket d|m〉/dτ .

To solve Eq. (9) at lowest order, we neglect the second term on the right hand side, which is

O(ǫ). Then we have

cn(t) = eiφn(t) cn(0), (10)

where

φn(t) = −
1

h̄

∫ t

0

En(ǫt
′) dt′. (11)

We see that in this approximation, the final coefficient cn(t) differs from the initial coefficient cn(0) by

a pure phase factor, which means that the probability Pn of finding the system in energy eigenstate

|n〉 is independent of time:

Pn = |cn(t)|
2 = |〈n(τ)|ψ(t)〉|2 = const. (12)

As a special case of interest, suppose that at t = 0 the system was in energy eigenstate N , that

is,

|ψ(0)〉 = |N(0)〉. (13)

Then at the final time we have,

|ψ(t)〉 = eiφN (t) |N(τ)〉, (14)

which we can express by saying that the quantum number is conserved. We emphasize again that

neither the energy EN nor the eigenket |N〉 is conserved. If we think in terms of wave functions,

we see that as the Hamiltonian changes, the wave function continuously distorts so as to remain
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proportional to an eigenfunction of H . The conclusions contained in Eqs. (10), (12) and (14) are

referred to as the adiabatic theorem.

The phase φn(t), defined in Eq. (11), is called the “dynamical phase.” Obviously if the Hamil-

tonian were truly time-independent, the dynamical phase would be φn = −Ent/h̄. As it is, Eq. (11)

expresses φn as the time integral of the instantaneous frequency En/h̄, which is no surprise.

It is of interest to go to the next order of approximation in solving Eq. (9), for at least three

reasons. First, the at the next order we will discover the conditions of validity of the adiabatic

theorem. Second, the next order term leads us to the interesting subject of Berry’s phase, and the

associated gauge theory. Finally, it is easy to see that the next order correction is needed for various

interference experiments, in which we study the interference of the final state ψ(t) with some fixed

state [perhaps a copy of the initial state ψ(0)]. To understand this interference even at a qualitative

level, we must know the phase of the final state through terms that are of order unity, that is, with

an error that is small compared to 2π. But Eq. (11) shows that the dynamical phase is O(1/ǫ), since

it is the integral of a quantity that is order unity over a long time. Therefore we need the next term

in the expansion of the phase, which is O(1).

To go to the next order, we rewrite Eq. (10), not as the solution of an approximate equation,

but as an exact change of variables. That is, we write

cn(t) = eiφn(t) bn(t), (15)

which serves to define a new set of coefficients bn. We substitute this into Eq. (11) and find,

ḃn(t) = −ǫ
∑

m

〈n|
d

dτ
|m〉ei(φm−φn) bm. (16)

This equation is still exact. If we integrate both sides of this equation over a long time interval, then

we might at first expect the integral of the right hand side to be of order unity, since the integrand

is O(ǫ) and the time interval is O(1/ǫ). However, the off-diagonal terms on the right hand side (the

terms m 6= n) involve the phase factor exp[i(φm − φn)], which oscillates many times in the long

time interval in question. Therefore in the integration over the long time interval, these oscillations

prevent the off-diagonal terms from accumulating. Instead, the integral of the off-diagonal terms

gives an answer that is itself O(ǫ), since each oscillation nearly cancels the previous one. On the

other hand, the diagonal terms m = n do not have the oscillating phase factor, so the integral of

them does accumulate over a long time to give a result that is of order unity.

This argument justifies the neglect of the off-diagonal terms in Eq. (16), which leaves us with

ḃn = −ǫ〈n|
d

dτ
|n〉bn. (17)

We integrate this to find

bn(t) = eiγ(t) bn(0), (18)

where the new phase γ(t) is defined by

γ(t) = iǫ

∫ t

0

〈n|
d

dτ ′
|n〉 dt′ = i

∫ τ

0

〈n|
d

dτ ′
|n〉 dτ ′. (19)
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The phase γ(t) is called the “geometric phase” or “Berry’s phase.” Notice that it is of order unity.

Notice also that γ is real, for if we take the normalization condition 〈n|n〉 = 1 and differentiate with

respect to time, we find

〈n|ṅ〉+ 〈ṅ|n〉 = 〈n|ṅ〉+ 〈n|ṅ〉∗ = 0, (20)

which shows that γ̇ = i〈n|ṅ〉 is purely real.

Combining these results, we can express the solution to the original problem, including both

the zeroth and first order approximations, in the form,

cn(t) = ei[φ(t)+γ(t)] cn(0), (21)

which shows that even at this order, the probability of finding the system in a given eigenstate is

independent of time. In fact, one can show that with the proper understandings, the probability

of finding the system in a given eigenstate is independent of time to all orders in the expansion

parameter ǫ. This does not mean that the probability is really constant, merely that the amount by

which the probability changes goes to zero faster than any power of ǫ as ǫ → 0. [This conclusion is

true if the Hamiltonian is an infinitely differentiable function of time, perhaps an analytic function.

If H has only a finite number of time derivatives, then the change in the probability goes to zero as

some power of ǫ.]

Now we can see what happens if degeneracies or near-degeneracies develop in the course of time.

An exact degeneracy, say, En = Em for some n 6= m, would mean that there was an off-diagonal

term in Eq. (16) that did not have the rapidly varying phase factor, at least over some time interval.

This would mean that we could not neglect all the off-diagonal terms, and that the integration of

Eq. (16) over time would introduce a coupling between states n and m. That is, the term in question

would induce transitions between the two states. In practice, the same is true for near degeneracies,

since in practice we always work with some finite time interval, and we never really take the limit

ǫ→ 0.

We can easily understand these transitions from the standpoint of time-dependent perturbation

theory. For let us suppose that the time-dependence of the Hamiltonian involves a characteristic

range of frequencies, out to some value ωH . We write this schematically as

ωH ∼
Ḣ

H
. (22)

Note that ωH is O(ǫ) by our assumptions; the time-dependence of the Hamiltonian is slow. On the

other hand, the resonance frequency between states n and m is (En−Em)/h̄, and if this comparable

to ωH , then we expect the time-dependence of H to induce transitions. Thus, we can say that the

condition for the validity of the adiabatic theorem is

Ḣ

H
≪

|En − Em|

h̄
. (23)

This should be true of all states n and m of interest; for example, if we choose the initial conditions

(13), we can set n = N and m = N ± 1, since it is the nearest neighbors to eigenvalue EN that are

in greatest danger of violating the condition (23).
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We turn now to the gauge structure that is inherent in adiabatic theory. To begin, we shift

emphasis slightly, and imagine that the time-dependence ofH takes place through a set of parameters

R = (R1, R2, . . .) that themselves are slow functions of time, so that H = H(R) and R = R(τ). A

useful example to keep in mind is that of a spin in a slowly varying magnetic field, for which

H = −µ ·B(τ). (24)

In this example, we can identify the parameters R with the magnetic field B, so that parameter

space is the same as “magnetic field space,” and is 3-dimensional. By the condition (22), the time

dependence of this Hamiltonian is slow enough for the adiabatic theorem to hold if it is slow in

comparison to the spin precession frequency, µB/h̄.

More generally, we imagine some parameter space of some dimensionality with coordinates R,

and we imagine finding the energy eigenvalues and eigenkets as functions of R, according to

H(R)|n(R)〉 = En(R)|n(R)〉. (25)

We think of the energy eigenvalues and eigenkets as fields over parameter space (scalar and ket

fields, respectively). We assume that the eigenvalues are discrete and nondegenerate over some

region of parameter space of interest; this implies that the eigenvalues are smooth functions of

R (assuming the dependence of H on R is smooth). Later we worry about what happens at

degeneracies. Likewise, we assume the eigenkets |n(R)〉 can be defined in a smooth and continuous

manner in the region of parameter space of interest. This will be possible if the region in question

is contractible and contains no degeneracies, as we assume. (But Born-Oppenheimer theory gives

rise to some interesting applications where these assumptions are not met.) Of course, the eigenkets

are only defined to within a phase factor by Eq. (25); when we write |n(R)〉, we assume some phase

conventions have been chosen for each value of R, in a smooth manner.

Now the history of the Hamiltonian under the adiabatic process can be described by a curve

R = R(τ) in parameter space, which starts at some point R0 and ends and some point R1. The

curve is fixed in parameter space, but is traversed ever more slowly as ǫ→ 0. Quantities such as the

eigenkets change along the curve according to

d

dτ
|n(R)〉 = ∇|n(R)〉 ·

dR

dτ
, (26)

where ∇ = ∂/∂R. Then we can write the geometric phase [see Eq. (19)] in terms of the line integral

of a certain vector field in parameter space,

γ = i

∫ τ

0

〈n|∇|n〉 ·
dR

dτ ′
dτ ′ =

∫ R1

R0

A(R) · dR, (27)

where

A(R) = i〈n(R)|∇|n(R)〉. (28)

In this equation, the vector field A(R) is associated with the state n in question, and sometimes

we might prefer to write An(R) to emphasize this. The line integral in Eq. (27) is taken along
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the given curve in parameter space (the history of the Hamiltonian). The vector field A(R) is

the vector potential or gauge potential for the problem, and is analogous to the vector potential in

ordinary electromagnetic theory, as suggested by the notation. We see that all dependence on the

time parameterization has dropped out in the final expression in Eq. (27) for the geometric phase,

and that this phase is independent of the rate at which the curve in parameter space is traversed, as

long as it is slow enough for the adiabatic theorem to be valid. It is for this reason that this phase

is called “geometric.”

The gauge transformations in this theory are changes in the phase conventions for the eigenkets

|n(R)〉. Such a change in phase conventions will be indicated by

|n(R)〉 → |ñ(R)〉 = eig(R)|n(R)〉, (29)

here the tilde indicates the new phase conventions. Of course there is no physics in these phase

conventions, so all physical results must be gauge-invariant. This is just as in electromagnetic

theory. The gauge scalar g in Eq. (29) is allowed to be a function of R, because there is no reason

why we cannot change the phase in a different manner for different parameter values. The R-

dependence of the gauge scalar is what qualifies these gauge transformations as “local.” In gauge

theories, only local gauge transformations are at all nontrivial or interesting. Of course, for a given

eigenket |n(R)〉 (for a given value of R and a given phase convention), there is no meaning to talking

about the “phase” of the eigenket in any absolute sense. For example, if the ket is associated with

a wave function ψn(r) = 〈r|n〉, then ψn is in general a complex function of position r, with different

phases at different points. On the other hand, the relative phase of two kets that are proportional

to one another is well defined.

Since all physical results must be gauge-invariant, we should examine all the quantities of our

theory to see how they transform under gauge transformations. For example, the eigenvalues En

and the dynamical phases φn are clearly gauge-invariant, whereas the eigenkets |n〉 are not [they

transform according to Eq. (29)]. Nor is the gauge potential gauge-invariant, for by substituting

Eq. (29) into Eq. (28), we find

A(R) → Ã(R) = A(R)−∇g(R), (30)

which is just as in electromagnetic theory. From this we find that the geometric phase is not gauge-

invariant, either, but rather transforms according to

γ(t) → γ̃(t) = γ(t)− g
(

R(τ)
)

+ g
(

R(0)
)

, (31)

as follows from Eq. (27). But the solution |ψ(t)〉 to the Schrödinger equation for given initial

conditions |ψ(0)〉 should be gauge-invariant simply because the solution to the Schrödinger equation

is unique. Indeed, if we combine Eqs. (13), (21), (29) and (31), we see that the gauge-dependence of

γ(t) is required to cancel that of |n(R)〉 and to make |ψ(t)〉 gauge-invariant. This gives us another

reason for carrying out the ǫ expansion through the geometric phase, since without it the results do

not transform properly under gauge transformations.
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A special case of interest is one in which the system is carried through a cycle, so that the

Hamiltonian returns to its original self after time t. In this case the curve in parameter space R(τ)

is closed, and we can apply Stokes’ theorem to the integral (27) for the geometric phase. This gives

γ =

∮

A(R) · dR =

∫

S

V · dS, (32)

where the surface S is a surface in parameter space bounded by the closed curve, and where

V(R) = ∇×A(R). (33)

Here we are assuming that parameter space is 3-dimensional, so we can use the standard notation of

vector calculus for Stokes’ theorem. In parameter spaces of other dimensionalities, it is necessary to

use differential forms, but all the important ideas are conveyed by the 3-dimensional case. Obviously,

V is analogous to the magnetic field in electromagnetic theory, and satisfies the field equation,

∇ ·V = 0. (34)

The vector field V is sometimes called the curvature form of the gauge theory.

Notice that for closed curves in parameter space, the gauge-dependence of γ seen in Eq. (31)

cancels out, and the geometric phase becomes gauge-invariant. The same conclusion follows from

the gauge-invariance of the vector field V,

Ṽ(R) = V(R), (35)

which appears in the surface integral in Eq. (32). In physical terms, the geometric phase must be

gauge-invariant for a closed cycle, because if the final state is proportional to the initial state, as

it must be according to the adiabatic theorem, then the relative phases of the two states can be

determined by interference experiments.

To return to the case of open curves in parameter space, we might be tempted to say that this

geometrical phase is just a nuisance that is due to a poor choice of phase conventions. After all,

γ is gauge-dependent, so perhaps it is completely nonphysical. Suppose, for example, we return to

Eq. (21), which was derived under the assumption that some phase conventions had been chosen for

|n(τ)〉 as a function of time along the history of the Hamiltonian, and use it to write the solution

(8) in the form,

|ψ(t)〉 =
∑

n

ei[φn(t)+γn(τ)] cn(0)|n(τ)〉. (36)

Now we say, the kets |n(τ)〉 involved a poor choice of phase, because they gave us a nonvanishing γ;

suppose we choose a different phase convention,

|ñ(τ)〉 = eiγn(τ) |n(τ)〉. (37)

Then the geometrical phase disappears from the solution,

|ψ(t)〉 =
∑

n

eiφn(t)|ñ(τ)〉, (38)
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and it seems that we do not have to worry about gauge transformations or gauge dependence. And

yet, if the history of the Hamiltonian should take us back to the initial Hamiltonian, so that the

curve in parameter space becomes closed, then the phase convention (37) no longer works, because

we have one Hamiltonian H0 = H1 with two different phase conventions. In other words, the phase

convention (37) introduces a discontinuity in the definition of the eigenkets when we go around a

closed loop in parameter space. This discontinuity is nothing but the geometrical phase associated

with the loop; this phase is gauge-invariant and cannot be banished by some clever choice of phase

convention.

Therefore it is better to say that the phases of the energy eigenstates, while they do contain a

nonphysical element that can be established only by convention, also contain a physical element that

is manifest on carrying an adiabatic process around a closed cycle. This is just as in electromagnetic

theory, where the integral
∮

A ·dr is the gauge-invariant magnetic flux associated with a closed loop.

At this point you might want to think through a specific problem involving the geometric phase,

for example a spin in a slowly varying magnetic field as in Eq. (24).

We now turn to some comments about the Born-Oppenheimer approximation, which is the

basic approximation scheme in the theory of molecules, and which relies crucially on notions of

adiabaticity. A precise and careful treatment of Born-Oppenheimer theory is a fascinating subject

that must lie outside the scope of this course; the following discussion merely aims to present some

of the simplest ideas.

Suppose we have a molecule consisting of some number of electrons and some number of nuclei.

We will label the electrons with indices i, j, etc., and the nuclei with indices α, β, etc. Let the

positions, momenta, and mass of the electrons be ri, pi, and m, and let the positions, momenta,

masses, and charges of the nuclei be Rα, Pα, Mα, and Zα. The notation attempts to use capital

letters for nuclei, and lower case letters for electrons. Then the basic Coulomb Hamiltonian for the

molecule is

Hmolec = Tn + Te + Vee + Ven + Vnn

=
∑

α

P2
α

2Mα
+
∑

i

p2
i

2m
+
∑

i<j

e2

|ri − rj |
−
∑

iα

Zαe
2

|ri −Rα|

+
∑

α<β

ZαZβe
2

|Rα −Rβ|
, (39)

where Tn and Te are the nuclear and electronic kinetic energies, and where Vee, Ven, and Vnn are

the potential energies of interactions of electrons with electrons, electrons with nuclei, and nuclei

with nuclei, respectively. This Hamiltonian is very complicated, and it must be handled by some

approximation scheme.

The Born-Oppenheimer approximation relies on the large disparity in the masses of the electrons

and the nuclei, which have a ratio of the order of 10−4 for most nuclei. This means that if the kinetic

energies of the electrons and nuclei are not too dissimilar, then the velocities of the electrons will
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be much higher than those of the nuclei, and we can picture the electron motion as being rapid in

comparison to the nuclear motion. Thus, while the heavy nuclei move a short distance, the electrons

will whiz around the nuclei or back and forth between them many times, effectively filling out an

electron cloud. (This picture is a metaphor of constructed of classical and quantum language, but

it does convey many ideas correctly.)

In a rigorous and precise treatment of the Born-Oppenheimer approximation, one expands the

molecular Hamiltonian in powers of the small parameter κ ∼ (m/M)1/4, which is of the order of

10−1 for most molecules. This expansion is nontrivial because the scale lengths of the wave functions

themselves with respect to the nuclear and electronic coordinates are different, and in particular,

involve different powers of κ. Thus, the κ ordering is not merely in the Hamiltonian, but also in the

spatial dependence of the wave functions.

As a result of this expansion, one finds that the spectrum of the molecular Hamiltonian possesses

three distinct energy scales. The largest is that of electronic excitations, involving energies Eelec

which are of the order of e2/a0, where a0 is the Bohr radius. The next smaller energy scale is

that of the vibrational motions of the molecule, in which the separation between energy levels is

of the order of Evib ∼ κ2Eelec. Finally, the smallest energy scale is that of the rotations of the

molecule, in which the separation between energy levels (for small angular momenta) is of the order

of Erot ∼ κ2Evib ∼ κ4Eelec. This ordering of energy scales is easy to understand from a qualitative

standpoint, as was discussed in class last semester.

In the present discussion we will take a simpler approach, but one that captures many of the

ideas of the more sophisticated theory. Let us argue that since the nuclei are heavy and slow moving,

we can treat them by classical mechanics, while the electrons, which are light, fast, and not easily

localized due to the constraints of the uncertainty principle, must be treated by quantum mechanics.

Thus, we will treat Rα and Pα in Eq. (39) as c-numbers, which presumably obey some classical

equations of motion that endow them with some time dependence, and we will treat ri and pi as

operators acting on wave functions for the electrons. This is a hybrid classical-quantum approach.

We now define the electronic Hamiltonian Helec as the last four terms in Eq. (39), which depends

on the operators ri and pi and on the nuclear positions Rα, which are c-numbers. We adopt an

abbreviated notation, in which r stands for all electron coordinates ri, R stands for all nuclear

coordinates Rα, etc.:

Helec(r,p;R) =
∑ p2

2m
+ Vee(r) + Ven(r,R) + Vnn(R). (40)

Since R = R(t) is supposedly a slow function of time, Helec is an example of a Hamiltonian with a

slow time dependence, in which the nuclear coordinates R are the slow parameters. The parameter

space is now the nuclear configuration space. Notice that the internuclear potential energy Vnn(R)

is a c-number, and is just a constant insofar as the electronic operators are concerned; but we include

it anyway in the electronic Hamiltonian.

The adiabatic theorem tells us to look at the eigenfunctions of Helec for fixed values of the
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parameters R. Physically, this means that we fix or freeze the locations of the nuclei, and then

solve for the electronic eigenfunctions and eigenvalues at the given nuclear locations. This problem

is similar to atomic structure calculations, except that that the electrons are attracted to two or

more fixed centers, instead of just one.

Let the eigenfunctions and eigenvalues of Helec for fixed values of R be φn(r;R) and En(R),

where the dependence on the parameters R is just as in Eq. (25), so that

Helec(r,p;R)φn(r;R) = En(R)φn(r,R). (41)

As indicated by the R-dependence, these eigenfunctions and eigenvalues change as the nuclei move

around. However, in accordance with the adiabatic theorem, we expect that if the system is prepared

in a given electronic eigenstate at some initial time, it will remain in the eigenstate with the same

quantum number as R slowly changes, even if the corresponding eigenfunction and energy should

change by a substantial amount. For example, at large distances where two atoms do not interact,

the electronic wave functions will be those of two independent atoms; but when the atoms approach

one another, the electron clouds will distort and overlap and electrons will begin to be exchanged

between the two atoms. But as long as the electronic energy levels do not come too close to one

another, we expect the probability of being in a given electronic eigenstate to be independent of

time.

[In fact, in important cases, the electronic eigenvalues do come close to one another, and one

must consider the transitions due to the breakdown of adiabaticity. Such transitions are called

Landau-Zener transitions, and are responsible for changes in electronic states in slow atomic or

molecular collisions.]

Since the electronic energies change as R changes, the energy difference must come from some-

where, and it is logical that it comes from the nuclear kinetic energy. In other words, the electronic

eigenenergy En(R) plays the role of a potential energy for the nuclear motion. Thus, we can take

the classical Hamiltonian for the nuclear motion to be

Hcl(R,P) =
∑ P2

2M
+ En(R) = 〈φn|Hmolec|φn〉, (42)

which is otherwise just the expectation value of the total molecular Hamiltonian Hmolec with respect

to the n-th electronic energy eigenstate, as indicated. We see that there is a different nuclear

classical Hamiltonian for each electronic energy level; as one says, there is a different “potential

energy surface” En(R) for each electronic state.

In a more careful treatment of the Born-Oppenheimer approximation, in which the nuclear

degrees of freedom are treated by quantum mechanics, one finds exactly the Hamiltonian (42) at

lowest order in the perturbation parameter κ, except that it is now a quantum Hamiltonian. At

the next order, one finds that the gauge potential A(R) associated with adiabatic transport of

the electronic eigenfunctions is incorporated into the nuclear Hamiltonian, giving pseudo-magnetic

effects. These include phase shifts similar to those in the Aharonov-Bohm effect that have observable

effects on scattering cross sections and molecular energy levels.
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The notion that the electronic eigenvalue is the potential energy for the nuclear motion leads to

an immediate understanding of the nature of the chemical bond. The example of the H2 molecule

will be discussed in class.

Problems

1. Consider the spin system described by the Hamiltonian,

H = −kS ·B(τ), (43)

where k is a constant and B is a function of the slow time variable, τ = ǫt. Allow the spin s to

take on any value, s = 0, 12 , 1, . . .. Identify parameter space with magnetic field space. Try to find a

smooth assignment of eigenkets |m(B)〉 over all of parameter space, where m = −s, . . . ,+s. Show

that it is possible to make such an assignment in a smooth manner everywhere in parameter space

except on the negative Bz-axis. Compute the gauge potential A(B), and the curvature form V.

Suppose the magnetic field B(τ) slowly traces out some closed curve in parameter space, not passing

through the origin B = 0. Both the magnitude and direction of B are allowed to change. Show

that the geometric phase γ is proportional to the solid angle subtended by this curve as seen from

the origin, and find the constant of proportionality. (Note that there is actually a different gauge

potential and geometric phase for each value of m.)

2. This is a practical problem which will reveal many of the features of the Born-Oppenheimer

approximation. Another point is made by this problem. It is a fact that atoms can interfere with

one another, i.e., one can create interference patterns with atoms. What is the “wave function” of

an atom, given that the atom consists of many constituent particles? (Of course, one could ask the

same of a proton or a neutron, which are not “elementary” either.) This problem will show how one

can construct a quantum mechanical description of a composite particle.

Consider a hydrogen atom in an external electric field. The field is produced by some exper-

imental apparatus, so the scale length L of the field is much greater than the size ℓ of the atom.

However, the field is not uniform. The physics of the situation is that the external field polarizes

the atom, so that the atom is attracted to regions of higher field strength. In this way, an electric

field gradient can be use to deflect neutral atomic beams.

(a) Write out the Hamiltonian for the atom, regarded as a proton-electron system, in some inertial

frame. Transform to the center of mass position R and relative position r, and expand the potential

energy in powers of ℓ/L out to the first nonvanishing term. (Let r be the electron position relative

to the proton.) Notice that because of the electric field, this Hamiltonian is not separable; thus, the

wave function Ψ(r,R) cannot be written as a product of functions of r and R separately.

(b) Now define a Hamiltonian Hatom(r,p;R) which is parameterized by the center of mass posi-

tion R. (This Hamiltonian contains all the terms in the total Hamiltonian except the center of
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mass kinetic energy). Notice that it has the form of a Stark Hamiltonian for hydrogen. Let the

eigenfunctions and eigenvalues of this Hamiltonian be un(r;R) and En(R), respectively.

Although the exact wave function Ψ(r,R) cannot be factored into a product of functions of r

andR separately, its r dependence can certainly be expanded as a linear combination of the un(r;R),

which form a complete set of functions of r for each value of R. Let the expansion coefficients be

φn; these must be functions of the parameters R. Thus, without loss of generality, we can write

Ψ(r,R) =
∑

n

φn(R)un(r;R). (44)

Actually, for hydrogen, the excited states n 6= 0 would quickly emit a photon and drop into

the ground state n = 0; this would even apply to the 2s state, due to the quenching (2s-2p mixing)

caused by the electric field. Therefore we need only include the n = 0 term in Eq. (44), and we can

write

Ψ(r,R) = φ(R)u0(r;R), (45)

where we write simply φ for φ0.

We will be interested in solving the time-dependent Schrödinger equation for Ψ(r,R, t), since

we are thinking of atoms in a beam. Therefore we allow φ in Eq. (45) to depend on t, φ = φ(R, t).

But u0 does not depend on t, because it is just an R-dependent eigenfunction of Hatom. Substitute

the given form for Ψ into the time-dependent Schrödinger equation, multiply through by u∗0 and

integrate over r. Show that the result is a new Schrödinger equation for φ(R, t) which has the form

1

2M
[P− h̄A(R)]2φ+G(R)φ+ En(R)φ = ih̄

∂φ

∂t
, (46)

where M is the total mass of the atom, A is the gauge potential associated with adiabatic transport

of the ground state wave function,

A(R) = i〈u0|∇R|u0〉, (47)

and where

G(R) =
h̄2

2M

∑

n6=0

|〈un|∇R|u0〉|
2. (48)

(c) Explain why, for hydrogen in the physical situation described, A(R) = 0. Hint: It would not

be true if there were also a magnetic field.

(d) The term G is normally very small and can be neglected. Use the results of second order

perturbation theory for the Stark effect (see Notes 23) to write down the effective potential energy

seen by the atom as a whole. The function φ(R) is the “wave function of the atom.”


