
Physics 221A

Fall 2007

Homework 9

Due Friday, November 2, 2007

Reading Assignment: Sakurai, pp. 197–198; rest of Notes 11, Notes 12, and pp. 1–8 or so of

Notes 13. Sakurai discusses magnetic resonance on pp. 320–325, but from a rather different

standpoint than we have. You may want to read what he says anyway. He remarks that four

Nobel prizes have been awarded for work involving magnetic resonance. The technique of

spin echo, which was invented by Erwin Hahn in our department, lies behind modern MRI

imaging techniques. We always hoped that Erwin, too, would win a Nobel for his work, but

it seems unlikely now. Nevertheless, his work has had tremendous practical impact.

1. A molecule is approximately a rigid body. Consider a molecule such as H2O, NH3, or

CH4, which is not a diatomic. First let us talk classical mechanics. Then the kinetic energy

of a rigid body is
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where L = (Lx, Ly, Lz) is the angular momentum vector with respect to the body frame,

and (Ix, Iy, Iz) are the principal moments of inertia. The body frame is assumed to be the

principal axis frame in Eq. (1). The angular velocity ω of the rigid body is related to the

angular momentum L by

L = Iω, (2)

where I is the moment of inertia tensor. When (2) is written in the principal axis frame, it

becomes

ωi =
Li

Ii

, i = x, y, z. (3)

Finally, the equations of motion for the angular velocity or angular momentum in the body

frame are the Euler equations,

L̇ + ω×L = 0. (4)

By using (3) to eliminate either ω or L, (4) can be regarded as an equation for either L

or ω. The Euler equations are trivial for a spherical top (Ix = Iy = Iz), they are easily

solvable in terms of trigonometric functions for a symmetric top (Ix = Iy = I⊥ 6= Iz), and

they are solvable in terms of elliptic functions for an asymmetric top (Ix, Iy, Iz all unequal).

The symmetric top is studied in all undergraduate courses in classical mechanics.
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(a) In quantum mechanics, it turns out that the Hamiltonian operator for a rigid body has

exactly the form (1). The angular momentum L satisfies the commutation relations,

[Li, Lj ] = −ih̄ εijk Lk, (5)

with a minus sign relative to the familar commutation relations because the components of

L are (in this problem) measured relative to the body frame. (We will not justifiy this. If

the components of L were measured with respect to the space or inertial frame, then there

would be the usual plus sign in (5).) Compute the Heisenberg equations of motion for L,

and compare them with the classical Euler equations. You may take (2) or (3) over into

quantum mechanics, in order to define an operator ω to make the Heisenberg equations look

more like the classical Euler equations. (Just get the equataion for Lx, then cycle indices

to get the others.) Make your answer look like (4) as much as possible.

(b) It is traditional in the theory of molecules to let the quantum number of Lz (referred

to the body frame) be k. Write the rotational energy levels of a symmetric top (Ix = Iy =

I⊥ 6= Iz) in terms of a suitable set of quantum numbers. Indicate any degeneracies. How

is the oblate case (Iz > I⊥) qualitatively different from the prolate case (I⊥ > Iz)? Hint:

In order to deal with standard commutation relations, you may wish to write L̃ = −L, so

that [L̃i, L̃j ] = ih̄ εijk L̃k.

2. A spin-1 particle has the component of its spin in the direction

n̂ =
1√
3
(1, 1, 1), (6)

measured, and the result is h̄. Find the probabilities for the various outcomes in a subse-

quent measurement of Sz. Do not diagonalize any matrices; use rotation operators.

3. Consider a particle of spin 1 and magnetic moment µ = −γS in the magnetic field,

B = B0ẑ + B10(x̂ cosω1t + ŷ sinω1t), (7)

employed in magnetic resonance experiments (assume γ > 0). If at t = 0, the particle is in

state m = 0, find the transition probabilities P (0 → ±1) as a function of time.

4. If we combine Eq. (12.31) with (12.38), we obtain

∂U

∂t
= − i

h̄
ω(t) · SU, (8)
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where we write U instead of T for the time evolution operator, which we know is a rotation.

Let U be parameterized by its Euler angles, U = U(α, β, γ). Find equations of motion for

the Euler angles, assuming ω(t) is given. Your answer will be identical to the equations of

motion of the Euler angles in classical rigid body theory (for given ω(t)).

5. Consider a biological sample at 300K in a magnetic field of 6T (for example, you

in an MRI device). After a certain relaxation time, the nuclear spins will reach thermal

equilibrium with their environment (a heat bath). Calculate the fractional magnetization of

protons under such circumstances (the magnetization compared to the maximum we would

have at 0K). Finally, for a sample of water under the conditions indicated, compute the

magnetization due to protons in Gauss.


