
Physics 221A

Fall 2007

Homework 7

Due Friday, October 19, 2007

Reading Assignment: Sakurai, pp. 123–143, 152–155; rest of Notes 8, Notes 9 through p. 10;

handwritten lecture notes.

1. The path integral for the harmonic oscillator.

(a) Sakurai (p. 116) says that there is a unique classical path connecting two endpoints

and endtimes, (x0, t0), (x, t). For the classical harmonic oscillator with Lagrangian,

L =
mẋ2

2
−

mω2x2

2
, (1)

find values of (x, x0, t) such that there exists a unique path; no path at all; more than one

path. Take t0 = 0, t1 = t and use τ for a variable intermediate time, 0 ≤ τ ≤ t, as in the

Notes.

(b) Compute Hamilton’s principal function S(x, x0, t) for the harmonic oscillator, and ver-

ify the generating function relations,

p1 =
∂S

∂x1

, p0 = −
∂S

∂x0

, H = −
∂S

∂t
. (2)

Do this for some time t such that there exists only one classical path.

(c) Sakurai (p. 117) says that the classical path is that which minimizes the action. Let

x(τ) be a classical orbit in the harmonic oscillator, satisfying x(0) = x0, x(t) = x for given

values of (x, x0, t). Consider a modified path, x(τ) + δx(τ), where δx(τ) vanishes at τ = 0

and τ = t. Expand the action along the modified path out to second order in δx, and show

that the second variation in the action can be written,

∫ t

0

dτ δx(τ)Bδx(τ), (3)

where B is some operator. Find an expression for the operator B, find its eigenvalues βn

and eigenfunctions ξn(τ). Show that if t < π/ω, then all eigenvalues are positive, and

the action is a minimum. For other values of time t, show that the number of negative
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eigenvalues of B is the largest integer less than ωt/π. Thus, for t > π/ω, the classical path

is not a minimum of the action functional, but rather a saddle point.

(d) Put the pieces together, and write out the Van Vleck expression for the propagator of

the harmonic oscillator, K(x, x0, t).

(e) Think of the complex time plane, and consider K(x, x0, t) for times on the real axis

satisfying 0 < t < π/ω. Analytically continue the expression for K in this time interval

down onto the negative imaginary time axis, set t = −ih̄β, and get an expression for

the matrix elements of the Boltzmann operator, 〈x|e−βH |x0〉 for a harmonic oscillator in

thermal equilibrium. Take the trace to get the partition function Z(β).

2. The classical Lagrangian for a particle of charge e in a combined magnetic field and

scalar potential V is

L(x, ẋ) =
m|ẋ|2

2
+

e

c
ẋ ·A(x) − V (x). (4)

It turns out that the discretized version of the path integral for the corresponding quantum

mechanical particle is

K(x,x0, t) = lim
N→∞

( m

2πih̄ε

)3N/2
∫

d3x1 . . . d3xN−1

× exp
{ iε

h̄

N
∑

j=1

[m(xj − xj−1)
2

2ε2

+
e

c

(xj − xj−1)

ε
· A

(xj + xj−1

2

)

− V (xj−1)
]}

. (5)

The interesting thing about this path integral is that the vector potential A is evaluated

at the midpoint of the discretized interval [xj−1,xj ]. Use an analysis like that presented

in Sec. 8.14 of the Notes to show that this discretized path integral is equivalent to the

Schrödinger equation for a particle in a magnetic field. Show that this would not be so

if the vector potential were evaluated at either end of the interval [xj−1,xj ] (it must be

evaluated at the midpoint). Show that it does not matter which end of the interval the

scalar potential is evaluated at.

The delicacy of the points at which the vector potential must be evaluated is related

to the fact that the action integrals in the exponent of the Feynman path integral are not

really ordinary Riemann sums, because the paths themselves are not differentiable. Instead,

they obey the ∆x ∼ (∆t)1/2 rule discussed in the notes. Casual notation such as Eq. (8.32)

glosses over such details.
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3. This problem is classical mechanics, but I give it anyway because it might help you

gain some insight into magnetic monopoles. Consider the motion of an electron of charge

q = −e in the field of a magnetic monopole. Assume the monopole is infinitely massive in

comparison to the electron. The monopole produces a field,

B(r) = g
r

|r|3
, (6)

where g is a constant. Although monopoles have never been observed, nevertheless people

have carried out experiments to search for them. In such experiments, it is important

to know the behavior of ordinary matter in a monopole field, in order to recognize the

signatures a monopole would make in experimental apparatus.

(a) Write down Newton’s laws for the electron motion. You may use the abbreviation,

µ =
eg

mc
. (7)

To solve these equations of motion, we begin by a search for constants of motion. If it were

an electric monopole instead of a magnetic monopole, then we would obviously have four

constants of motion: the energy E and angular momentum L = mr×v. Show that the usual

(orbital) angular momentum vector L = mr×v is not conserved. Show that L2 is conserved,

however. This gives you two time-independent constants of motion, (E,L2), which are not

enough to obtain the complete solution. Therefore we must find more constants of motion.

(b) Consider the vector potential,

A =
−g cos θ

r sin θ
φ̂. (8)

This vector potential differs by a gauge transformation from the vector potentials dis-

ussed in class. It is well behaved everywhere except on the z-axis (both positive and

negative). Verify that this vector potential gives the magnetic field of Eq. (6). This vector

potential is invariant under rotations about the z-axis, that is, the angle φ is ignorable. Use

this vector potential in a classical Lagrangian in spherical coordinates, and use Noether’s

theorem to obtain another conserved quantity (in addition to E, L2). Show that this quan-

tity is Lz plus another quantity which you may call Sz. Write Jz = Lz + Sz, so that Jz is

the new conserved quantity. As the notation suggests, interpret Jz as the z-component of

a vector J, i.e., guess the formula for J = L+S (all 3 components). Hint: to help you with

the guess, transform Jz to rectangular coordinates. By resorting to Newton’s laws, show

explicitly that J is conserved. You now have four time-independent constants of motion,

(E,J). There are only four, because L2 is a function of J; show this.
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(c) By playing around with dot products of various vectors and looking for exact time

derivatives, find more constants of motion. Use these to find r2 as a function of t. Show

that the electron can reach the singularity at r = 0 only if L2 = 0.

(d) Show that the orbit lies on a cone whose apex is at the origin. Find the opening angle

of the cone as a function of (E,J). Find a vector which specifies the axis of the cone.

Assume L2 6= 0, and let t = 0 occur at the point of closest approach. Find the distance of

closest approach as a function of (E,L).

(e) Choose the axes so that J is parallel to the z-axis. Find (r, θ, φ) as functions of t.

4. Prove the commutation relations (9.30), using Eq. (9.23) and the properties of the

Levi-Civita symbol εijk.


