
Physics 221A

Fall 2007

Homework 6

Due Friday, October 12, 2007

Reading Assignment: Sakurai, pp. 109–123; Notes 8, through p. 20.

1. The propagator can not only be used for advancing wave functions in time, but also

sometimes in space. Consider a beam of particles of energy E in three dimensions launched

at a screen in the plane z = 0. The particles are launched in the z-direction. The screen has

holes in it that allow some particles to go through (for example, it might be a double slit

experiement). We will assume that the wave function at z = 0 inside the holes is constant,

say, ψ(x, y, 0) = 1 when (x, y) lies inside a hole, and zero when (x, y) is not in a hole. This is

(to within an overall phase) what would happen if we took the plane wave eikz and just cut it

off at the edges of the holes. In other words, ψ(x, y, 0) is the “characteristic function” of the

holes. Suppose also that the region z > 0 is vacuum. With an extra physical assumption,

this information is enough to determine the value of the wave function in the region z > 0.

Define a wave number by

k0 =

√
2mE

h̄
, (1.1)

so that ψ(x, y, z) satisfies the wave equation

∇2ψ + k2

0
ψ = 0 (1.2)

in the region z > 0. We would like to solve this wave equation in the region z > 0, subject

to the given boundary conditions at z = 0.

The same equation and boundary conditions also describe some different physics. If

plane light waves of a given frequency ω are launched in the z-direction against the screen,

and if ψ stands for any component of the electric field, then ψ satisfies Eq. (1.2) with

k0 = ω/c. The problem is one of diffraction theory (either in optics or quantum mechanics).

Write the wave equation (1.2) in the form,

−∂
2ψ

∂z2
= (k2

0 + ∇2

⊥)ψ, (1.3)

where

∇2

⊥ =
∂2

∂x2
+

∂2

∂y2
. (1.4)
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(a) Consider now the equation

i
∂ψ

∂z
= −

√

k2
0

+ ∇2

⊥
ψ, (1.5)

where the square root of the operator indicated is computed as described in Sec. 1.20 of

the Notes. Obviously we have just taken the square roots of the operators appearing on

the two sides of Eq. (1.3), with a certain choice of sign. Show that any solution ψ(x, y, z)

of Eq. (1.5) is also a solution of Eq. (1.3).

The converse is not true, there are solutions of Eq. (1.3) that are not solutions of

Eq. (1.5), but the solutions of Eq. (1.5) all have the property that the waves are travelling

in the positive z-direction, something we require on the basis of the physics.

Now suppose that in the region z > 0 the angle of propagation of the waves relative to

the z-axis is small. This will be the case if the size of the holes in the screen is much larger

than a wavelength. Then ∇2

⊥
acting on ψ is much less than k2

0
multiplying ψ, so we can

expand the square root in Eq. (1.5) to get

i
∂ψ

∂z
= −

(

k0 +
1

2k0

∇2

⊥

)

ψ. (1.6)

This is called the paraxial approximation. Now define a new wave function φ by

ψ(x, y, z) = eik0zφ(x, y, z), (1.7)

and derive a wave equation for φ.

(b) Now write an integral giving φ(x, y, z) for z > 0 in terms of φ(x, y, 0). Suppose for

simplicity there is one hole, and it lies inside the radius ρ = a, where

ρ =
√

x2 + y2. (1.8)

Show that if z � a2/λ, then φ(x, y, z) is proportional to the 2-dimensional Fourier transform

of the hole (that is, of its characteristic function). This is the Fraunhofer region in diffraction

theory. Smaller values of z lie in the Fresnel region, which is more difficult mathematically

because the integral is harder to do.

(c) Suppose the hole is a circle of radius a centered on the origin. Evaluate the integral

explicitly and obtain an expression for ψ(x, y, z) for z in the Fraunhofer (large z) region.

You may find the following identities useful:

J0(x) =
1

2π

∫

2π

0

dθ eix sin θ, (1.9)
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where J0 is the Bessel function. See Eq. (9.1.18) of Abramowitz and Stegun. Also note the

identity,
d

dx
(xJ1(x)) = xJ0(x). (1.10)

See Eq. (9.1.27) of Abramowitz and Stegun.

This problem can be used to calculate the forward scattering amplitude in hard sphere

scattering, a topic we will take up later.

2. The evaluation of the path integral by the stationary phase approximation requires us

to evaluate the determinant of the matrix (8.69), in the limit N → ∞. Fortunately, it can

be shown that in this limit, the value of the determinant becomes the solution of a simple

differential equation, which has a simple classical interpretation. Furthermore, the result

can be expressed in terms of Hamilton’s principal function S as shown by Eq. (8.71). This

is convenient, because we need S anyway for the phase of the path integral. In this problem

we derive Eq. (8.71).

In this problem, as in the lectures and Notes, we denote the final time by t and a

variable intermediate time by τ , so that 0 ≤ τ ≤ t.

(a) In classical mechanics we must often consider the problem of how a small change or

error in initial conditions affects the final conditions.

Consider a classical particle in one dimension, moving in potential V (x). The classical

equation of motion is

m
d2x(τ)

dτ2
= −V ′(x). (2.1)

Suppose the initial conditions are x(0) = x0, p(0) = p0 at τ = 0. The final position at τ = t

is a function of t and of the initial conditions,

x(t) = x(x0, p0, t). (2.2)

Suppose we make small changes δx0, δp0 in the initial conditions. Then the change in

the position δx(t) at the final time is given by

δx =

(

∂x

∂x0

)

p0

δx0 +

(

∂x

∂p0

)

x0

δp0, (2.3)

where we have indicated the variables that are held fixed in the various derivatives.

Assuming that both x(τ) and x(τ) + δx(τ) are solutions of Eq. (2.1), and assuming

that δx(τ) is small, derive an equation of evolution for δx(τ). This will be expressed in
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terms of the function x(τ), which you may take to be given. In other words, you will obtain

an equation of evolution for a small perturbation around a given classical orbit.

(b) Use the relations (8.39) to express the coefficient of δp0 in Eq. (2.3) in terms of Hamil-

ton’s principal function S. Compared to the notation of Sec. 8.9, notice that t, t0 and t1 of

that section become τ , 0 and t here. Also, since the system is time-independent, Hamilton’s

principal function S depends only on (x, x0, t).

(c) To apply the stationary phase formula (8.58), we need the determinant of the (N −
1) × (N − 1) matrix Qk` in Eq. (8.69) in the limit N → ∞. Let Dk be the determinant of

the upper left k × k block of Q, as in the Notes. Show that Dk satisfies Eq. (8.70). It will

help to define D0 = 1 and D−1 = 0. Show that for a free particle, Dj = j+1, so detQ = N

in this case. This suggests that even when the potential is nonzero, detQ diverges as N

when N → ∞. As pointed out in the Notes, such a divergence is needed to make the path

integral finite. Therefore define

Fj = εDj , (2.4)

so that FN−1 will approach a definite limit as N → ∞. Notice that Fj satisfies the same

recursion relation as Dj .

(d) Let τj = jε, and let Fj go over to a function F (τ) in the limit ε → 0. Show that

the recursion relation for Fj becomes a differential equation for F (τ), in fact, the same

differential equation you derived in part (a). Also show that F (0) = 0 and F ′(0) = 1.

(e) Use these results to express F (t) in terms of Hamilton’s principal function S(x, x0, t),

and prove Eq. (8.81).

This problem shows that the determinant of Q contains information about the paths

that are nearby the classical path x(τ) in path space.


