
Physics 221A

Fall 2007

Homework 4

Due Thursday, September 27, 2007

Reading Assignment: Sakurai, pp. 68–89, 97-109, Notes 6, lecture notes posted for the week.

1. In this problem we work with one-dimensional, kinetic-plus-potential Hamiltonians,

H =
p2

2m
+ V (x). (0)

The Bohr-Sommerfeld quantization condition for an oscillator is

1

2πh̄

∮

p dx = n+
1

2
, (1)

where the integral is taken around a bound orbit. The value of the integral is the x-p

area of the orbit; this area is a function of the energy, so certain orbits, of energy En, are

“quantized.” The Bohr-Sommerfeld rule is not exact; rather it is the leading term in the

expansion of the energy eigenvalues in powers of h̄.

(a) In classical mechanics, the action of a periodic orbit is defined by

J =
1

2π

∮

p dx. (2)

The action is a function of the energy of the orbit, J = J(E), which can be inverted to give

E = E(J). Show that
dE

dJ
= ω, (3)

where ω is the frequency of the orbit. The frequency is in general a function of E or J (but

not for the harmonic oscillator, where ω is a constant).

(b) A classical charged particle in periodic motion radiates at the freqency ω of the motion

as well as all higher harmonics kω, k = 2, 3, . . .. In some cases the power radiated at higher

harmonics is small, but the general principle holds. This follows from standard methods of

classical electromagnetic theory, applied to a particle in periodic motion.

The motion may not be truly periodic, however, unless some outside agent maintains

the particle in its orbit, replacing the energy lost by radiation. Otherwise the energy of the



– 2 –

particle decreases as energy is lost to radiation, the orbit changes, and the frequency of the

orbit changes along with it. In most oscillators, the frequency is a function of the energy

(the harmonic oscillator is an exception). If, however, the energy lost per cycle is small, we

can still speak of the frequency of the classical motion and its relation to the frequencies

(the harmonics) of the emitted radiation.

In quantum mechanics, the frequency of the radiation emitted by a particle is ∆E/h̄,

where ∆E is the energy difference between an initial and final state. This follows from the

Einstein relation E = h̄ω for the energy of a photon and the Bohr notion that mechanical

systems (atoms etc) have discrete energy levels. This part of the argument was understood

in the days of the old quantum theory, well before modern quantum mechanics had been

developed.

Consider a one-dimensional oscillator in quantum state n with energy En where n

is large, and suppose it makes a transition to lower energy level n − ∆n, where ∆n is

small. Using the Bohr-Sommerfeld quantization rule, show that the frequency of the emitted

radiation is approximately a harmonic of the classical frequency ω at classical energy En.

2. Consider the Bohr-Sommerfeld quantization of a 1-dimensional oscillator in a potential

V (x).

(a) Integrate the square of the WKB wave function ψ between the two turning points to

obtain the normalization constant. The wave function blows up at the turning points, but

you can do the integral anyway. Write out the normalized wave function. (The damped

waves in the classically forbidden regions can be ignored.) Replace cos2 by the average

value 1/2 in the integrand before doing the integral. Express the normalization constant

both in terms of the classical period T and the quantity ∂En/∂n, where n is treated as a

continuous quantity.

(b) Now assume the potential well is symmetric, V (−x) = V (x), with V (0) = 0. Show

that

|ψ(0)|2 =
1

πh̄

√

2m

E

∂En

∂n
cos2

(nπ

2

)

, (4)

and

|ψ′(0)|2 =

√
8m3E

πh̄3

∂En

∂n
sin2

(nπ

2

)

. (5)

Carry your calculations only out to leading order in h̄.

3. Consider the potential energy illustrated in Fig. 1.
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Fig. 1. Potential for problem 3.

For the energy shown, there are three turning points. In the region to the left of x0 let

ψ have the form,

ψ(x) =
1

p(x)1/2

(

eiS(x,x0)/h̄ + re−iS(x,x0)/h̄
)

, (6)

where r is the reflection amplitude. Find r as a function of the energy E. Please use the

following notation:

Φ =
2

h̄
S(x2, x1), (7)

and

κ =
1

h̄
K(x1, x0). (8)

Hint: work from right to left.

Show that |r|2 = 1, which means that all particles sent in from the left come back

(ingoing and outgoing fluxes are equal). Show that when the energy is not close to a

nominal Bohr-Sommerfeld energy level of the well, then r ≈ −i (the value r would have if

there were no well to the right of x0), but that when E increases through such an energy

level, then the phase of r rapidly increases by 2π. This is a resonance. Estimate the range

∆E over which this change takes place. Assume that the energy is not too close to the top

of the well, i.e., the quantity e−κ is small.

Estimate the ratio ψin/ψout of the wave function inside and outside the well, in the
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case where E is far from a Bohr-Sommerfeld energy level of the well, and in the case where

E is equal to one of these energy levels.

4. As you know, the radial wave equation in 3-dimensional problems with central force

potentials looks like a 1-dimensional Schrödinger equation,

− h̄2

2m

d2f

dr2
+ U(r)f(r) = Ef(r), (9)

except that r ranges from 0 to ∞, and the potential U(r) is the sum of the centrifugal

potential and the true potential V (r),

U(r) =
`(`+ 1)h̄2

2mr2
+ V (r). (10)

Therefore one-dimensional WKB theory can be applied to the radial wave equation. It can

be shown that more accurate results are obtained in the WKB treatment if the quantity

`(` + 1) in the centrifugal potential is replaced by (` + 1
2 )2. This is called the Langer

modification. Just accept this fact for the purposes of this problem; the justification has to

do with the singularity of the centrifugal potential as r → 0.

(a) Take the case of a free particle, V (r) = 0. Find the WKB solution in the classically

allowed region. For boundary conditions in the classically forbidden region near r = 0,

just assume that there is only a growing wave (as r increases). Evaluate all functions

explicitly; use the abbreviation k =
√

2mE/h̄. Take the limit r → ∞, and reconcile the

result with the asymptotic forms of the spherical Bessel function j`(ρ), quoted by Sakurai

in his Eq. (A.5.15). (Sakurai’s ρ = kr.)

(b) Consider a potential V (r) which is not zero, but which approaches 0 as r → ∞. Since

the particle approaches a free particle as r → ∞, we might expect the solution at large r

to look like a free particle solution, but with a phase shift. Explicitly, if the free particle

solution has the form f(r) = cos(kr+αf ) as r → ∞, where αf is the phase shift for the free

particle, and the solution in the presence of the potential has the form f(r) = cos(kr+αp)

as r → ∞, where αp is the phase shift in the presence of the potential, then we define

δ = αp − αf as the phase shift in the potential scattering, measured relative to the phase

shift of a free particle. Use WKB theory to write down an expression for δ, which will

involve the limit of a certain quantity as r → ∞.

(c) Does this limit exist? It can be shown that it does if V (r) falls off more rapidly as

r → ∞ than the centrifugal potential, i.e., more rapidly than 1/r2; the limit also exists
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when the true potential falls off exactly as fast as the centrifugal potential, i.e., as 1/r2.

Therefore consider the case that V (r) approaches 0 as 1/rα, where 0 < α < 2. Show that

the phase shift exists only if 1 < α < 2. In particular, in the important case of the Coulomb

potential (α = 1), the phase shift does not exist (the asymptotic form of the radial wave

function f is more complicated than a phase-shifted free particle solution).


