
Physics 221A

Fall 2007

Homework 3

Due Thursday, September 20, 2007

Reading Assignment: Sakurai, pp. 44-60, 174–187, the rest of Notes 4, Notes 5, other lecture

notes posted for the week on the web site.

1. In quantum mechanics the measurement of one observable introduces an uncontrollable

and unpredictable disturbance in the value of any observable that does not commute with

the one being measured, as discussed in Sec. 2.6 of the Notes. For example, a measurement

of µz in a Stern-Gerlach apparatus causes the values of µx and µy to become completely

undetermined.

We can understand how this disturbance comes about in a classical model. To measure

µz, we must use a magnetic field in the z-direction, but this causes µx and µy to precess, so

their values on emerging from the Stern-Gerlach apparatus are different from their values

when they entered. If classical mechanics were valid, we could calculate the precession angle

for any particular particle in the beam, and compensate for the evolution in µx and µy.

The beam has some spatial extent, however, so particles do not follow the same trajectory

and their spins do not precess by the same angle, but if the size of the beam is made small

enough the spread in these angles can be made as small as we like. In particular, it can be

made � 2π, giving us a definite phase angle for the whole beam, and therefore known (and

controllable) effects on µx and µy when we measure µz.

Show that if we try to do this in quantum mechanics, we wash out the effect we are

trying to observe, namely, the splitting of the beam into two beams that make two spots

on a screen. For simplicity you may assume that Eq. (2.37) is valid.

2. Measuring the Schrödinger wave function is not like measuring a classical field, such as

an electric field. Consider a scattering gedankenexperiment in which spinless particles of a

given energy are directed at a target, as in the figure. We wish to measure the wave function

downstream from the scatter. We assume the beam is described by a pure state, and that

the incident wave is a plane wave (over a sufficiently large spatial region). The beam is low

density, so the particles do not interact with one another. To measure |ψ(r)|2 over some

volume of space, we just put a screen S in a certain location, and gather enough statistics

to get the probability density on this surface. We then move the surface and measure again.
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Figure for problem 2. A scattering experiment.

Describe a modification to this gedankenexperiment by which the phase of the wave

function ψ(r) can be measured on the screen, apart from the overall phase, which of course

is nonphysical and can never be measured.

3. Let |ψ〉 be the state of a spinless particle in three dimensions, and let φ(p) = 〈p|ψ〉

be its momentum space wave function. Find the momentum space wave function of the

state T (a)|ψ〉, that is, find the action of the translation operator T (a) in the momentum

representation.

4. In this problem we denote operators with a hat, as in x̂ or Â, and we denote eigenvalues

or classical quantities without a hat, as in x or A(x, p). We work in one dimension, and

think of a wave function ψ(x) or ψ(x, t).

If Â is an operator, we define the Weyl transform of Â, denoted A(x, p), by

A(x, p) =

∫ +∞

−∞

ds e−ips/h̄ 〈x+ s/2|Â|x− s/2〉. (4)

Here the notation |x− s/2〉, for example, means the eigenket of x̂ with eigenvalue x− s/2.

It is useful to think of A(x, p) as a function defined on the classical (x, p) phase space which

is in some sense the classical observable corresponding to the quantum operator Â.

(a) Show that if A(x, p) is the Weyl transform of operator Â, then A(x, p)∗ is the Weyl

transform of Â†. In particular, this shows that the Weyl transform of a Hermitian operator

is a real function on phase space.
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(b) Show that if operators Â and B̂ have Weyl transforms A(x, p) and B(x, p), respectively,

then

tr(Â†B̂) =

∫

dx dp

2πh̄
A(x, p)∗B(x, p). (5)

Notice how the right hand side looks like the “scalar product” of two classical observables

on phase space.

(c) Find the Weyl transforms of the following operators: 1 (the identity operator); x̂; p̂;

x̂p̂; p̂x̂; p̂2/2m+ V (x̂).

(d) Let W (x, p) be the Weyl transform of the density operator ρ̂. Since ρ̂ is Hermitian,

W (x, p) is real. Interpret the integrals

∫ ∞

−∞

dxW (x, p) and

∫ ∞

−∞

dpW (x, p), (6)

physically and compare to the corresponding integrals of ρ(x, p) in classical statistical me-

chanics, where ρ is the classical probability density in phase space.

Now some comments. These results suggest that W (x, p) is a distribution function

of particles in phase space whose statistics reproduces the statistics inherent in quantum

measurement. Unlike a classical distribution function ρ(x, p), however, W (x, p) can take on

negative values. These “negative probabilities” have no meaning in any statistical sense,

but they only arise, in a certain sense, when we attempt to measure x and p simultaneously

to a precision greater than that allowed by the uncertainty principle.

5. Consider the Hamiltonian for a particle of charge q in an electromagnetic field:

H =
1

2m

[

p −
q

c
A(x, t)

]2

+ qΦ(x, t), (7)

where we allow all fields to be space- and time-dependent.

(a) Define the kinetic momentum operator π by

π = p−
q

c
A(x, t). (8)

Notice that π has an explicit time dependence, due to the A term. Work out the com-

mutation relations, [xi, πj ] and [πi, πj ]. Use these to work out the Heisenberg equations

of motion for the operators x, π. Then eliminate π, and find an expression for ẍ (the

Heisenberg analog of the Newton-Lorentz equations).
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(b) By taking expectation values, show that if B is uniform in space and E has the form,

Ei(x) = ai +
∑

j

bij xj , (9)

where ai and bij are constants, then the expectation value of x follows the classical orbit.


