
Physics 221B

Spring 2008

Homework 18

Due Friday, February 15 at 5pm

Reading Assignment: Rest of Notes 27, but you can skip the section on Koopman’s theorem;

Notes 28; lecture notes for 2/5/08 and 2/7/08.

1. The Hartree-Fock equations can be solved by iteration. A simplification is to average

the potentials over angles and spins after they are computed in terms of some approximate

orbitals, to make the Schrödinger equation for the next iteration of orbitals into a central

force problem. However, as mentioned in class, this averaging is not necessary in the case

of completely filled subshells; in this case, rotationally invariant potentials and central force

orbitals are self-consistent.

It is a familiar fact that a three-dimensional central force Hamiltonian H = p2/2m +

V (r) has eigenfunctions in the form Rnℓ(r)Yℓm(Ω), and that the energies only depend on

n and ℓ. It turns out that these facts are true for any rotationally invariant Hamiltonian

in three dimensions (that is, H need not have the simple kinetic-plus-potential form). This

is important in Hartree-Fock theory, because the exchange potential is not an ordinary

potential.

(a) In Hartree-Fock theory, the direct potential is given in terms of the orbitals uλ(r) by

Eq. (27.90). Suppose that the orbitals are central force orbitals so λ = (nℓmℓms), and

suppose that all subshells are filled. Show that the direct potential is then rotationally

invariant, that is, it only depends on r = |r|.

Hint: It is easiest to solve this as a problem in electrostatics. The potential will be

rotationally invariant if the charge density is rotationally invariant. To prove the latter fact,

use the addition theorem for spherical harmonics, Eq. (13.70). Once the charge density is

known the potential can be determined by Gauss’s law.

(b) An operator K̂ is rotationally invariant if it commutes with all rotation operators,

U(R)†K̂U(R) = K̂, (1)

for all R ∈ SO(3). See Eq. (13.3) or (13.13) for the definition of U(R). K is also called a

scalar operator (see Sec. 16.3). Let K(r, r′) be the kernel of the operator K̂, so that the
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action or K̂ on a wave function ψ is

(K̂ψ)(r) =

∫
d3r′K(r, r′)ψ(r′). (2)

Then the kernel is the r-space matrix elements of the operator K̂,

K(r, r′) = 〈r|K̂|r′〉. (3)

This is precisely the situation we have with the exchange potentials in Hartree-Fock theory,

see Eq. (27.92). (If the kernel of the exchange potential is V ±
ex(r, r′), then we may write the

operator as V̂ ±
ex. See Eq. (27.93) for the definition of the kernel.)

If K̂ is rotationally invariant, then we must have

〈r|U(R)†K̂U(R)|r′〉 = 〈Rr|K̂|Rr′〉 = 〈r|K̂|r′〉, (4)

or,

K(r, r′) = K(Rr,Rr′), (5)

for all R ∈ SO(3). Think of the kernel K(r, r′) as a function of two vectors in 3D space.

According to Eq. (5), if K̂ is rotationally invariant, then the value of K(r, r′) is unchanged

if both vectors are rotated by the same rotation. This means that K(r, r′) is actually only a

function of the rotational invariants of the triangle formed by the two vectors r and r′. The

triangle invariants include the lengths of the three sides of the triangle, r = |r|, r′ = |r′|,

and |r− r′|, or the three angles of the triangle.

Show that in the case of complete subshells, two exchange potentials V ±
ex(r, r′) are

functions only of the triangle invariants, so that the operators V̂ ±
ex are rotationally invariant.

Show also that the two exchange potentials (for spin up and spin down orbitals) are equal,

so there is only one Hartree-Fock equation (and we can drop the ±).

Parts (a) and (b) of this problem prove that in the case of complete subshells, it is not

necessary to average the potentials (direct and exchange), since they automatically turn

out to be invariant under rotations and independent of spin.

2. Work out the multiplets (terms) 2S+1L which result from 3 equivalent d electrons.

(“Equivalent” means that they all belong to the same subshell.) Check to make sure your

answer adds up to the correct number of levels, based on the degeneracy expected in the

central field approximation. In the case of vanadium, use Hund’s rules to determine the

ground state multiplet. When spin-orbit coupling is turned on, the multiplets split, and

the resulting levels are denoted 2S+1LJ . Which of these represents the ground state of

vanadium?
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3. Write out the 2P wave functions explicitly for an (np)3 configuration (e.g., nitrogen),

that is, as linear combinations of Slater determinants that you may identify by their m-sets

(the set of magnetic quantum numbers for electrons in incomplete subshells). You may

denote these Slater determinants simply by |m-set〉.


