
Physics 221A

Fall 2007

Homework 10

Due Friday, November 9, 2007

Reading Assignment: Rest of Notes 13, Notes 14, beginning of Notes 15, lecture notes for

the week.

I have also posted some notes on converting between SI and Gaussian units. They are

somewhat incomplete but may be helpful.

1. Consider wave functions f(θ, φ) on the unit sphere, as in Sec. 13.5. Using the differential

operators in Sec. 13.4, find the simultaneous eigenfunction of L2 and Lz with eigenvalues 2h̄2

and h̄, respectively (that is, the case ` = 1). Normalize this wave function but leave leave

a phase factor that will be determined later. Now apply L− twice to this state fill out the

standard basis vectors in an irreducible subspace. The wave functions are proportional to

Y1m for m = 1, 0,−1. By requiring Y10 to be real and positive at the north pole, determine

the phase. Compare your answers to a table of Y`m’s.

2. Some problems concerning orbital angular momentum in the momentum representa-

tion.

(a) Consider a spinless particle moving in three-dimensional space. It was shown in

class that the standard angular momentum basis consists of wavefunctions of the form

un(r)Y`m(θ, φ), where un(r) is an arbitrary basis of radial wave functions. The wave func-

tions being referred to here are configuration space wave functions, ψ(r) or ψ(r, θ, φ). Con-

sider the wave functions φ(p) in the momentum representation. Let (p, β, α) be spherical

coordinates in momentum space, that is,

px = p sinβ cosα,

py = p sinβ sinα,

pz = p cosβ.

(1)

Find the form of the wavefunctions that make up the standard angular momentum basis in

momentum space.

(b) Let ψ(r) be a wave function in three dimensions, and let ψ ′(r) be the rotated wave

function corresponding to rotation matrix R ∈ SO(3). According to Eq. (13.13),

ψ′(r) = ψ(R−1r). (2)
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Use this fact and the usual expression for the momentum space wave function,

φ(p) =

∫

d3r

(2πh̄)3/2
e−ip·r/h̄ ψ(r), (3)

to find a relation between φ′(p) and φ(p).

(c) A useful formula in scattering theory is the expansion of a plane wave in terms of free

particle solutions of definite angular momentum. It is

eik·r =
∞
∑

`=0

ei`π/2 (2`+ 1)j`(kr)P`(cos γ), (4)

where γ is the angle between r and k, where j` is a spherical Bessel function, and where P`

is a Legendre polynomial.

Suppose ψ(r) = u(r)Y`m(θ, φ). Show that φ(p) = v(p)Y`m(β, α), and find a one-

dimensional integral transform connecting the radial functions u(r) and v(p).

3. This problem involves some exercise with expectation values of powers of r in hy-

drogen-like atoms. These expectation values are useful in perturbation theory and other

places. There are various ways to evaluate these expectation values; for example, one can

use the generating function of the Laguerre polynomials. But I think the following method

is somewhat easier, once you get it going.

(a) Write out the radial Schrödinger equation for a hydrogen-like atom. (“Hydrogen-like”

means V (r) = −Ze2/r.) Show that if a = h̄2/µZe2, then

d2u

dr2
+

[

−
`(`+ 1)

r2
+

2

ar
−

1

n2a2

]

u = 0, (5)

where u is the normalized radial wave function corresponding to quantum numbers n and

`. Now multiply this by rk+1(du/dr) and integrate from 0 to ∞. Use integration by parts

to show that

(k + 1)

∫

∞

0

rk
(du

dr

)2

dr =
k + 1

n2a2
〈rk〉 −

2k

a
〈rk−1〉 + `(`+ 1)(k − 1)〈rk−2〉. (6)

In the integrations, you may assume that k > −2`−2, which will cause the boundary terms

to vanish.

(b) Now multiply (5) by rku and do more integration by parts, and combine the result

with (6) to show that

k + 1

n2
〈rk〉 − (2k + 1)a〈rk−1〉 +

a2k

4

[

(2`+ 1)2 − k2
]

〈rk−2〉 = 0. (7)
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This is called the Kramer’s relation.

(c) Use (7) to find 〈rk〉 for k = −1, k = 1, and k = 2. Notice that you cannot evaluate

〈1/r2〉 by this method. For that you need to face up to generating functions, or some other

method. However, given that
〈 1

r2

〉

=
1

a2n3(`+ 1

2
)
, (8)

find 〈1/r3〉. The latter is needed for the fine structure perturbations and the Zeeman effect.

4. About wave functions of particles, including spin.

(a) The wave function of a particle with spin was defined in Eq. (15.12). Also, it was

explained in class that if rotations act on ket space E1 by means of operators U1(R), and

on ket space E2 by means of operators U2(R), then they act on E = E1 ⊗ E2 by means of

operators U(R) = U1(R) ⊗ U2(R). The latter product would often be written in physics

literature without the ⊗, that is, simply U(R) = U1(R)U2(R). Here we are thinking of

combining orbital and spin ket spaces.

If ψm(r) is the wave function of a spinning particle in state |ψ〉, then what is the wave

function of the particle in the rotated state, U(R)|ψ〉?

(b) The Pauli equation is the Schrödinger equation for an electron interacting with electric

and magnetic fields, including the spin degrees of freedom. The Pauli Hamiltonian is

H =
1

2m

(

p−
q

c
A

)2

+ qΦ − µ ·B, (9)

and the wave function is understood to be that of a spin- 1

2
particle with q = −e and g =

the electron g-factor. Here Φ and A are the electromagnetic scalar and vector potentials.

Consider an electron in a central force potential V (r), plus a uniform magnetic field

B = Bb̂. Let ω0 = eB/mc. Use the gauge A = 1

2
B×r. Consider the time-dependent Pauli

equation for the electron,

ih̄
∂

∂t
|ψ(t)〉 = H|ψ(t)〉, (10)

where H is the Pauli Hamiltonian (9) and where qΦ = V (r).

Define a new state |φ(t)〉 by

|ψ(t)〉 = U(b̂, ωt)|φ(t)〉, (2)
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where U(b̂, ωt) is a rotation operator that rotates the whole system (orbital and spin degrees

of freedom). This means that |φ(t)〉 is the state in a frame rotating with angular velocity

ω about the axis b̂.

Find a frequency ω that eliminates the effect of the magnetic field on the orbital motion

of the particle, apart from the centrifugal potential which is proportional to (b×r)2. Find

a frequency ω that eliminates the effect of the magnetic field on the spin. Express your

answers as some multiple of ω0. Can you eliminate the effects of the magnetic field entirely,

apart from the centrifugal potential?

5. In lecture we worked out the energy levels (the Landau levels) and eigenfunctions for

a “spinless” electron in a uniform magnetic field. See the lecture notes for Sept. 27. I

mentioned that this was not a good approximation, because if you include the spin it does

more than just make small perturbations in the levels you found without spin.

Including the spin, find the energy levels of an electron in a uniform magnetic field.

Express your answer in terms of ω0 = eB/mc, the orbital frequency of a classical electron

in a uniform magnetic field. This is a short problem, and does not require any lengthy

calculations.


