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Notes 19

The Stark Effect in Hydrogen

and Alkali Atoms

In these notes we will consider the Stark effect in hydrogen and alkali atoms as a

physically interesting example of bound state perturbation theory. The Stark effect concerns

the behavior of atoms in external electric fields.

We begin with the one-electron Hamiltonian

H0 =
p2

2m
+ V0(r). (19.1)

Here V0(r) is a central force potential, which for hydrogen is

V0(r) = −e
2

r
. (19.2)

Neutral alkali atoms such as Na have one electron in the outer, valence shell, which surrounds

a core of completely filled subshells containing Z−1 electrons. A simple model of such atoms

treats the inner core as a spherically symmetric distribution of negative charge which screens

the nuclear charge. The amount of screening depends on the radius; as r → 0, the full,

unscreened charge of the nucleus is seen, whereas when the valence electron is pulled far

away from the core, it leaves behind an ion of +1 unit of charge. Thus, we can use Gauss’

law to find the electric field (radial component only) seen by the valence electron,

E0(r) =
eZeff (r)

r2
, (19.3)

where

Zeff(r) →
{

Z, r → 0,
1, r → ∞.

(19.4)

This gives the potential for the valence electron,

V0(r) = −e2
∫ ∞

r

Zeff(r)

r2
dr, (19.5)

which can be used in the Hamiltonian (19.1). There is no simple formula for Zeff(r).

For weak external electric fields it would be necessary to include the effects of spin in the

Hamiltonian (19.1), not because the spin interacts with the external electric field (it does
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not), but because the spin affects the energy levels and degeneracies of the unperturbed

system through the fine structure splittings, the Lamb shift, etc. If the external field is

sufficiently strong, however, the Stark effect overwhelms the fine structure and other small

splittings, and the spin can be ignored. In the following we will ignore the spin and treat the

electron as if it were a spinless particle; we do this partly for simplicity, but the approach

is realistic for strong enough fields.

Before embarking on perturbation theory, we must understand the unperturbed system,

its energies, eigenstates and their degeneracies. In our spinless model, the unperturbed

energy levels in hydrogen are given by the usual Bohr formula,

En = − 1

2n2

e2

a0
, (19.6)

where a0 is the Bohr radius. These levels are n2-fold degenerate. In the case of the alkalis,

the energy levels have the form En`, and are (2` + 1)-fold degenerate. There is no simple

formula for the alkali levels En`, but for given n, the energies are an increasing function of

`. For example, in Na, the ground state is a 3s level (n = 3, ` = 0), and the 3p level (n = 3,

` = 1) is sufficiently far above the ground state that the photon emitted in the transition

3p → 3s lies in the optical range of frequencies (this is the yellow sodium D-line). In both

cases (hydrogen and alkalis) the energy eigenstates have the form |n`m〉.
Any system with rotational invariance, regardless of the number of particles or the

presence of spin-dependent interactions, has energy levels which are independent of the

quantum number m of Jz, the z-component of the total angular momentum. In particular,

in central force problems, where the energy eigenstates have the form |n`m〉, the energy

levels in general have the form En`, and are (2` + 1)-fold degenerate, corresponding to

m = −`, . . . ,+`. This is the situation with the alkalis. In hydrogen, however, the energies

have additional degeneracy, that is, they are independent of both m and `, and the n2

degeneracy comes from counting all ` = 0, . . . , n − 1 and m = −`, . . . ,+`. All central

force Hamiltonians are invariant under rotations in 3-dimensional space. The Coulomb

Hamiltonian, however, is actually invariant under rotations in a certain 4-dimensional space,

in which the extra dimension cannot be interpreted in the same physical sense as the first

three. It is this larger symmetry which is responsible for the extra degeneracy seen in

hydrogen.

As for the perturbation, let us write F for the external electric field (instead of E, to

avoid confusion with the energy E), and let us take it to lie in the z-direction,

F = F ẑ. (19.7)
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Thus, the perturbing potential has the form

V1 = qφ = −qF · r = eFz, (19.8)

where we set q = −e for the electron. The unperturbed potential V0 depends on r, but the

perturbing potential V1 depends on z, so the perturbation breaks the full rotational sym-

metry of the unperturbed problem. However, the perturbed Hamiltonian is still invariant

under rotations about the z-axis.

z

V1 = eFz

V0 + V1

V0

V0

V0 + V1

Fig. 19.1. The total potential energy V0 +V1 along the z-axis for an atomic electron in the Stark effect. The
atomic states which are bound in the absence of the external field become resonances (dotted lines) when the
perturbation is turned on.

Figure 19.1 is a plot of the total potential V0 + V1 along the z-axis, which reveals

several qualitative features of the exact solution. For small z, the attractive Coulomb

field dominates the total potential, and we have the usual Coulomb well which supports

atomic bound states. We assume the applied electric field F is small compared to the

electric field due to the nucleus in this region, which justifies the use of perturbation theory.

However, for large negative z, the unperturbed potential goes to zero, while the perturbing

potential becomes large and negative. At intermediate values of negative z, the competition

between the two potentials gives a maximum in the total potential. The bound states of

the unperturbed system are able to tunnel through the potential barrier, as indicated by

the dotted lines in the figure. We see that when an external electric field is turned on, the

bound states of the atom cease to be bound in the strict sense, and become resonances.
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This happens regardless of how weak the external field is. Obviously this is because an

electron can gain an arbitrarily large amount of energy in an uniform field if we are willing

to move it far enough, and this energy can be larger than the binding energy of the atom.

Electrons which tunnel through the barrier and emerge into the classically allowed region

at large negative z will accelerate in the external field, leaving behind an ion. This is the

phenomenon of field ionization.

However, the time scale for this tunnelling may be very long. As we know from WKB

theory, the tunneling probability is exponentially small in the tunnelling action, so we expect

the deeper bound states to have longer lifetimes in the external field, perhaps extremely

long lifetimes. Furthermore, as the strength of the electric field is decreased, the distance

the electron must tunnel increases, and the tunnelling probability decreases exponentially.

On the other hand, the atom has an infinite number of very weakly bound states which pile

up at E = 0, and many of these will lie above the top of the barrier when the external field

is turned on. These states of course no longer exist, even as resonances, in the presence of

the perturbation. This simply means that the weakly bound states are easily ionized.

In the following perturbation analysis, we will see no evidence of the tunnelling. As

we know, a resonance can be thought of as an energy level which has both a real and an

imaginary part; as we will see, bound state perturbation theory will only give us the shift

in the real parts of the energy levels under the perturbation. The imaginary parts can be

computed by various means, such as WKB theory, time-dependent perturbation theory, or

(in the case of hydrogen) an exact separation of the wave equation in confocal parabolic

coordinates.

For simplicity, let us begin the perturbation analysis with the ground state of the atom,

so we can use nondegenerate perturbation theory. In the case of hydrogen, the ground state

is the 1s or |n`m〉 = |100〉 level, and for an alkali, the ground state has the form |n00〉 (for

example, n = 3 for Na). According to Eq. (18.20) (with a change of notation), the first

order shift in the ground state energy level is given by

∆E
(1)
gnd = 〈n00|eFz|n00〉 = 0, (19.9)

which vanishes because of parity. The operator z is odd under parity, while the state |n00〉
is one of a definite parity (even), so the matrix element vanishes. The matrix elements

are the same as in the theory of electric dipole radiative transitions, and follow the same

selection rules (here Laporte’s rule). As we say, there is no linear Stark effect in the ground

state of hydrogen or the alkalis.

More generally, there is no linear Stark effect in any nondegenerate eigenstate of any
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system which conserves parity, since any such eigenstate must necessarily be an eigenstate

of parity. (See Theorem 1.2.) This applies to multiparticle systems, as well as the single

particle systems considered here. Since the Hamiltonians for all isolated atoms, molecules

and nuclei conserve parity to a high degree of approximation, we can say that there is no

linear Stark effect for any nondegenerate eigenstate of such a system. The weak interac-

tions do violate parity, and cause the energy eigenstates of real systems to contain small

admixtures of states of opposite parity, but these effects are very small and are difficult

to see even when one is looking for them. (Weak interactions are easier to see at higher

energies.) In the following discussion we will ignore the weak interactions, and proceed as

if all Hamiltonians of interest do commute with parity.

The vanishing of the linear Stark effect is closely related to the vanishing of a permanent

electric dipole moment. In classical electromagnetic theory, we define the dipole moment

vector d of a charge distribution by

d =

∫

d3r ρ(r)r, (19.10)

that is, it is the charge-weighted position vector. In quantum mechanics, we replace ρ(r)

by q|ψ(r)|2, and obtain the expectation value of the dipole moment operator,

〈d〉 =

∫

d3rψ(r)∗(qr)ψ(r), (19.11)

where the operator itself is given by

d = qr. (19.12)

This is for a single charged particle; for several charged particles the dipole operator is

defined by

d =
∑

i

qiri. (19.13)

A quantum state is considered to have a permanent electric dipole moment if the expectation

value (19.11) is nonzero. The integral in Eq. (19.11) has the same form as the matrix element

occurring in Eq. (19.9), so we see that there is no permanent electric dipole moment in any

nondegenerate eigenstate of any atom, molecule, or nucleus.

It is sometimes stated that molecules come in two kinds, those which have no permanent

electric dipole moments, and those which do. The latter class includes molecules such as

water H2O and hydrogen chloride HCl. Let us keep these polar molecules in mind as we

search for a system with a nonvanishing linear Stark effect.

Since nondegenerate energy eigenstates give no permanent electric dipole moment, let

us look at degenerate eigenstates, starting with the excited states of the alkalis, which are
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simpler than the excited states in hydrogen. The energy levels have the form En`, and

the eigenstates |n`m〉 are (2`+ 1)-fold degenerate, because the energy does not depend on

m. According to degenerate perturbation theory [see Eq. (18.26)], the first order energy

shifts are the eigenvalues of the matrix of the perturbing Hamiltonian with respect to the

degenerate states of the unperturbed system. In the present case, we have a (2`+1)×(2`+1)

matrix indexed by m and m′,

〈n`m|eFz|n`m′〉. (19.14)

Notice that n and ` are the same on both sides of these matrix elements, because these

indices label the unperturbed, degenerate level. Only the index m is allowed to be different

on the two sides, because this index labels the basis kets lying in the unperturbed eigenspace.

But we need not do any work to find the eigenvalues of this matrix, because all the

matrix elements (19.14) vanish, again by parity. This is because the parity of a central force

eigenstate |n`m〉 is (−1)`, which is the same on both sides of the matrix elements (19.14).

In fact, we see that there will be no linear Stark effect, and no permanent electric dipole

moment, in any state of any atom, molecule or nucleus, degenerate or otherwise, unless that

state involves a degeneracy between eigenstates of opposite parity. When a Hamiltonian

commutes with parity, as we assume, the two subspaces of the Hilbert space corresponding

to states of opposite parity (the two eigenspaces of the parity operator) are not coupled

by the Hamiltonian, and the eigenvalues of the Hamiltonian operator in one subspace are

effectively independent of the eigenvalues in the other subspace. This means that it would

take some very unlikely accident, or some systematic symmetry which goes beyond parity,

to cause any two energy levels in the two subspaces to coincide exactly. For most systems,

such accidents do not happen, although it is possible for two states of opposite parity to

have energies which are very close.

In the case of central force problems, since the parity is (−1)`, we we need a degeneracy

between different ` values to have a degeneracy between states of opposite parity. Such

degeneracy never occurs in the real world, with the one exception of the excited states of

hydrogen, where the energy levels En are independent of `. Actually, even in hydrogen,

the degeneracy between different ` values is only an approximation, and does not hold in

the real world. The hydrogen energy levels (19.6), which are n2-fold degenerate (2n2 if

we include the spin), are split and shifted by relativistic effects and the coupling of the

electron to the electromagnetic field (the Lamb shift). Relativistic effects alone do not lift

the `-degeneracy, that is, this degeneracy persists in the Dirac equation, but the Lamb shift

does, so we have to say that in the real world, even in hydrogen, there are no degeneracies

between states of opposite parity. In this sense, the linear Stark effect never exists, and no
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system has a permanent electric dipole moment. Such a statement is strictly correct for

sufficiently weak electric fields.

If, however, we have a system with a near degeneracy between states of opposite parity

(which holds for the excited states of hydrogen because the Lamb shift is small), then

electric fields which are sufficiently strong will overwhelm the splitting, and cause a mixing

of states of opposite parity. Recall that we assumed such strong fields when we neglected

spin in our atomic Hamiltonian. Therefore, for sufficiently strong electric fields, we can say

that certain systems do exhibit a linear Stark effect, and do behave as if they possess a

permanent electric dipole moment. This applies to the excited states of hydrogen, as well

as other systems such as polar molecules like HCl, for which rotational states of opposite

parity are mixed by reasonably strong electric fields. To fully understand the situation with

molecules requires, however, some knowledge of the Born-Oppenheimer approximation.

Let us now analyze the excited states of hydrogen in first-order, degenerate perturbation

theory. The shifts in the energy level En are given by the eigenvalues of the n2×n2 matrix,

indexed by (`m) and (`′m′), with matrix elements

〈n`m|eFz|n`′m′〉. (19.15)

Notice the indices which are primed and those which are not. This is potentially a large

matrix, but many of the matrix elements vanish because of various symmetry considerations.

The `-selection rule, which follows from the Wigner-Eckart theorem and parity, is the same

as in the theory of dipole transitions, namely, ∆` = ±1 (the Wigner-Eckart theorem would

allow ∆` = 0, but this is excluded by parity). There is also a selection rule on the magnetic

quantum number, because the operator z is the q = 0 component of a k = 1 irreducible

tensor operator [see Eq. (15.26)], so the matrix element vanishes unless m = m′.

Consider, for example, the case n = 2. The four degenerate states include the 2s level,

with eigenstate |n`m〉 = |200〉, and the 2p level, with eigenstates |21m〉 for m = 0,±1.

According to the selection rules, only the states |200〉 and |210〉 are connected by the

perturbation. Therefore of the 16 matrix elements in the 4×4 matrix, the only nonvanishing

ones are

〈200|eFz|210〉 = −W (19.16)

and its complex conjugate. This matrix element is easily evaluated by resorting to the

hydrogen radial wave functions. The result is real and negative, so that W defined above

is positive; we find

W = 3eFa0. (19.17)
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The energy W is of the order of the energy needed to shift the electron from one side of the

atom to the other in the external field. The 2 × 2 matrix connecting the two states |200〉
and |210〉 is

(

0 −W
−W 0

)

, (19.18)

and its eigenvalues are the first order energy shifts in the n = 2 level,

∆E
(1)
2 = ±W. (19.19)

In addition, the two states |211〉 and |21,−1〉 do not shift their energies at first order, so

the other two eigenvalues of the matrix (19.15) are ∆E
(1)
2 = 0, 0.

n = 2

| +W 〉

|211〉, |21,−1〉

| −W 〉

Fig. 19.2. The Stark effect splits the n = 2 level of hydrogen into three levels, of which one is two-fold
degenerate.

The Stark effect in the n = 2 level of hydrogen is illustrated in Fig. 19.2. The 4-

fold degeneracy of the unperturbed system is partially lifted, but there remains a 2-fold

degeneracy in the states |211〉 and |21,−1〉. The perturbation calculation above only reveals

this degeneracy through first order, but in fact it holds to all orders. To see this, we note

that both Lz and time reversal Θ are exact symmetries of the fully perturbed Hamiltonian,

H = H0 + H1. Since [Lz,H] = 0 the exact eigenstates of H can be chosen to be also

eigenstates of Lz. Denote these by |αm〉, where α represents any additional quantum

numbers besides the magnetic quantum number m needed to specify an energy eigenstate.

We write H|αm〉 = Eαm|αm〉 and Lz|αm〉 = mh̄|αm〉, so that state |αm〉 has energy Eαm.

(Note that in a central force problem, the energies are independent of m, but the Stark

potential, including the perturbation, is not a central force potential.) Consider now the

state Θ|αm〉. It is easy to show that this state is an eigenstate of the Hamiltonian with

energy Eαm, since [Θ,H] = 0 and since

H(Θ|αm〉) = ΘH|αm〉 = Eαm(Θ|αm〉). (19.20)

However, in view of the conjugation relation (17.9), we also have

Lz(Θ|αm〉) = −ΘLz|αm〉 = −mh̄(Θ|αm〉). (19.21)
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Thus, Θ|αm〉, which has the same energy as |αm〉, must be a linear combination (over α)

of the states |α,−m〉. If m 6= 0, this means Θ|αm〉 is linearly independent of |αm〉, and

hence the energy Eαm is at least 2-fold degenerate. More generally, one can show that all

states with m 6= 0 have a degeneracy which is even (the energy depends only on |m|). The

only energy levels which can be nondegenerate are those with m = 0. These conclusions

are exactly what we see in Fig. 19.2.

Do not confuse this argument with Kramer’s degeneracy, which applies whenever we

have a system with an odd number of fermions. In the present calculation, we are ignoring

the spin of the electrons, treating them as if they were spinless particles, so Kramer’s

degeneracy does not apply.

The same argument applies to any system in which the Hamiltonian commutes with

both Lz and Θ. For example, in the theory of the H+
2 molecule, we are interested in the

motion of an electron in the field of two protons. If we imagine the protons pinned down

at locations z = ±a/2 on the z-axis, then the Hamiltonian commutes with both Lz and

Θ. Then by the previous argument, all states with m 6= 0 are at least doublets. In reality,

of course, the protons are not pinned down, but rather the molecule is free to vibrate and

rotate like a dumbbell. When these effects are included, it is found that the ±m doublets

become split. This is called “Λ-doubling,” since Λ (not m) is the standard notation for the

magnetic quantum number of the electrons about the axis of a diatomic molecule.

To return to the Stark effect in the n = 2 levels of hydrogen, we can also work out the

perturbed eigenstates. These are linear combinations of the unperturbed eigenstates, with

coefficients given by the eigenvectors of the matrix (19.18). Explicitly, we have

| +W 〉 =
1√
2
(|200〉 − |210〉),

| −W 〉 =
1√
2
(|200〉 + |210〉). (19.22)

The coefficients in these linear combinations are the same as the coefficients cα in

Eq. (18.23). In the language of Notes 18, we are determining the projection of the ex-

act eigenstates onto the unperturbed eigenspace. This is zeroth order part of the exact

eigenstates, since the part orthogonal to the unperturbed eigenspace is small. Notice that

even though the perturbation is small, it has caused large (order unity) changes in the

eigenkets.

Notice also that the perturbed eigenkets are mixtures with equal probabilities of states

of different parity. The phases are different for the two states | ±W 〉, which causes the

charge distribution to be shifted either above or below the origin on the z-axis. The energy
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of the state is either raised or lowered compared to the unperturbed energy, depending on

whether the charge distribution has been moved with or against the external field.

There is some interesting physics involving radiative transitions and the Stark effect on

the n = 2 levels of hydrogen. In the absence of an external field, the 2p level of hydrogen

has a lifetime on the order of 10−9 seconds, before the atom emits a photon and drops

into the 1s state. But the 2s level is metastable, and decays much more slowly, mainly via

two photon emission, in about 10−1 seconds. This makes it easy to create a population of

mainly 2s and 1s states of hydrogen, since if a population of hydrogen atoms is knocked

into mixture of excited states, perhaps by collisions with an electron beam, then after a

short time everything will have decayed into either the 1s state or the metastable 2s state.

Now the 2s state is a linear combination of the states | ±W 〉,

|200〉 =
1√
2
(| +W 〉 + | −W 〉), (19.23)

even in the absence of an external field. But if an atom is in the 2s state at t = 0, at

which time an external field is turned on, then the two eigenstates | ±W 〉 have different

energies and evolve with different time-dependent phases, e−iEt/h̄. If there were no radiative

transitions, then the state of the system would oscillate between the states |200〉 and |210〉
with a frequency determined by the energy difference, 2W . But because of the radiative

transitions, the state |210〉 drops down into the ground state in about 10−9 seconds. The

effect is to rapidly depopulate the 2s state, and to cause the emission of a burst of photons.

This phenomenon is called quenching.

Let us return to the ground state of hydrogen. Although the first order Stark energy

shift in this state vanishes, the first order shift in the wave function is nonzero. We see this

from Eq. (18.22), which in the present notation is

|ψ〉 = |100〉 +
∑

(n`m)6=(100)

|n`m〉 〈n`m|eFz|100〉
E1 −En

. (19.24)

Here |ψ〉 is the perturbed ground state. This state has a nonzero electric dipole moment,

unlike the unperturbed ground state. For if we compute the expectation value of the dipole

operator d = −er and carry the answer to first order in the perturbation, we find

〈d〉 = 〈ψ|d|ψ〉 = αF, (19.25)

where the polarizability α is given by

α = −2e2
∑

(n`m)6=(100)

〈100|z|n`m〉〈n`m|z|100〉
E1 −En

. (19.26)
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The x- and y-components vanish in Eq. (19.25), and α is positive in Eq. (19.26) because

the energy denominator is negative. The polarizability α is a scalar in this problem, but

more generally it will be a tensor giving the linear reltionship between the induced dipole

moment and the electric field,

di =
∑

j

αij Fj . (19.27)

Given the polarizability of a single atom, it is straightforward to compute the dielectric

constant of a gas of the atoms, although for hydrogen under normal circumstances it is

unrealistic to speak of a gas of atoms (as opposed to molecules). This is an example of how

electric susceptibilities can be computed from first principles.

Since the first order energy shift in the ground state vanishes, it is of interest to compute

the second order shift. We invoke Eq. (18.21) with necessary changes of notation, to write

∆E
(2)
gnd =

∑

(n`m)6=(100)

〈100|eFz|n`m〉〈n`m|eFz|100〉
E1 −En

= −1

2
αF 2. (19.28)

We see that the second order energy shift can be expressed in terms of the polarizability.

This energy can also be written,

∆E
(2)
gnd = −1

2
〈d〉 · F. (19.29)

The presence of the factor 1
2 in this formula may be puzzling, since we are accustomed to

thinking of the energy of a dipole in a field as −d ·F. The reason for this factor is that the

dipole moment is induced by the external field, and is itself proportional to F; the energy

(19.29) is the work done on the atom by the external field as it builds up from zero to its

maximum value.

It is of interest to evaluate the sum (19.26), to obtain a closed form expression for the

polarizability α. This sum contains an infinite number of terms, and, in fact, it is more

complicated than it appears, because the continuum states must also be included (there

is an integral over the continuum states as well as a sum over the discrete, bound states).

There are various exact methods of evaluating this sum, but we will content ourselves with

an estimate. We begin with the fact that the energy levels En increase with n, so that

En −E1 > E2 −E1 =
3

8

e2

a0
. (19.30)

But this implies that

α <
2e2

E2 −E1

∑

n`m

〈100|z|n`m〉〈n`m|z|100〉. (19.31)
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We excluded the term (n`m) = (100) in Eq. (19.26), but we can restore it in Eq. (19.31)

after taking out the constant denominator, since this term vanishes anyway. The result

contains a resolution of the identity, so that the sum in Eq. (19.31) becomes the matrix

element,

〈100|z2|100〉 = a2
0. (19.32)

This gives the estimate

α <
16

3
a3
0. (19.33)

An exact treatment of the sum (19.26) gives the result,

α =
9

2
a3
0, (19.34)

so the exact expression for the second order energy shift is

∆E
(2)
gnd = −9

4
F 2a3

0. (19.35)

This energy shift is of the order of the energy of the external field contained in the volume

of the atom.


