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Spins in Magnetic Fields

A nice illustration of rotation operator methods which is also important physically is

the problem of spins in magnetic fields. The earliest experiments with spins in magnetic

fields were those of Stern and Gerlach, which first revealed the quantization of electron spin.

Similar but later experiments by Stern and other collaborators were used to make crude

measurements of the proton magnetic moment and other nuclear magnetic moments. In the

late 1930’s, these experiments were improved upon by Rabi, who developed the technique of

spin flipping with time-dependent magnetic fields. With his new apparatus, Rabi was able

to make much more accurate measurements of nuclear magnetic moments. After World War

II, Bloch and Purcell developed methods for studying magnetic resonance in bulk samples

(solid or liquid), by measuring microwave power absorbed at resonance or by looking at the

time development and relaxation of induced magnetization. In the same period, Rabi’s beam

techniques were improved upon by Ramsey. In modern applications, pulsed fields are used to

craft precise quantum states and to watch their time evolution. Applications of the magnetic

resonance technique include measurements of nuclear magnetic moments and g-factors,

measurements of diamagnetic shielding of external fields in molecules or solids (important

in chemistry and solid state physics), the construction of sensitive magnetometers and

atomic clocks, and tomography or imaging in medicine and biology.

A classical model of a particle of charge q and mass m in a circular orbit leads to a

proportionality between the (orbital) angular momentum L of the particle and the magnetic

moment µ of the current loop,

µ =
q

2mc
L. (13.1)

Equation (13.1) is a vectorial relation, and, in particular, if the charge is negative, the

magnetic moment and angular momentum point in opposite directions. This equation is

derived from a classical model, but in fact it is also valid for the quantum mechanical

treatment of orbital motion of electrons in atoms. In the case of particle spins, however, it

is necessary to introduce a fudge factor or g-factor, and to write

µ = g
q

2mc
S. (13.2)

The g-factors are measured experimentally for different particles and can sometimes be

calculated theoretically (notably in the case of the leptons, especially the electron and
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muon). In other cases (the hadrons such as the proton, neutron, or various atomic nuclei),

current theory can provide no more than crude estimates.

Why are the magnetic moments of nuclei and particles proportional to the spin? These

two vectors are certainly not proportional in all systems, because the angular momentum

is determined by the mass distribution of the system and its state of motion, while the

magnetic moment is determined by the charge distribution and its state of motion. In fact,

for many atoms and molecules, µ is not proportional to J (the total angular momentum).

Why then should it be so for nuclei and particles like the proton and electron?

The answer has to do with energy scales. Consider first the case of nuclei. Normal

laboratory processes in atomic physics involve energies which are much smaller than the

energy scales in the nucleus, which are typically of the order of MeV. Furthermore, the

interaction energies of spins in typical laboratory magnetic fields are much smaller than

typical atomic energy scales. Therefore if the nucleus is in its ground state, or even in an

excited state with a lifetime which is long in comparison to the duration of some experiment,

then the nucleus is essentially in a single energy level. That is, very little mixing between

nuclear energy levels can be induced by interactions with either atomic or external fields

(electric or magnetic), because of the large energy differences between nuclear levels. This

can be seen in perturbation theory, where the energy denominators would be very large.

Now a single energy level of a nucleus is characterized by an angular momentum value,

called the spin of the nucleus and denoted here by s. Therefore, if s 6= 0, this level is

degenerate, since the magnetic quantum number ms can take on the 2s+ 1 values between

−s and +s. This degeneracy is due to the rotational invariance of the nuclear Hamiltonian.

However, nuclei have no other symmetry which leads to any further degeneracies, as we

will discuss more fully later in the course. Therefore the subspace of the nuclear Hilbert

space corresponding to a definite energy level consists of a single irreducible subspace under

rotations, of dimensionality 2s+1, and the basis kets in this space can be taken to be |s,ms〉.

As long as we restrict consideration to a single energy level, this (2s+1)-dimensional space

is the Hilbert space of the nucleus.

We will denote the angular momentum operator of the nucleus by S. This operator

consists of the orbital and spin contributions of all the constituent nuclei of the nucleus,

and could consist of many terms. But when we restrict this operator to a single irreducible

subspace corresponding to a definite energy level of the nucleus and express it as a matrix

in the standard basis |s,ms〉, this operator is represented by the standard matrices for the

components of angular momentum as seen in Eq. (11.37). For example, for a nucleus of

spin- 1

2
, meaning a definite energy level of a nucleus with spin- 1

2
, we will have S = (h̄/2)σ.
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Furthermore, the spin operator S is a vector operator, i.e., it transforms as a vector

under rotations. This is the significance of the generalized adjoint formula, Eq. (11.57). It

can also be shown that on a single irreducible subspace, every vector operator is proportional

to the angular momentum (here S), that is, the angular momentum is essentially the only

vector operator there is on such a space. This kind of reasoning underlies the Wigner-Eckart

theorem, which we will consider soon. Therefore, since the magnetic moment µ is another

vector operator, it must be proportional to S. This would not be true if energy scales were

large enough to mix together different energy levels of the nuclei, i.e., levels corresponding

to irreducible subspaces with different values of s. This is why atoms and molecules do not

necessarily have µ proportional to J, since their energy levels are mixed substantially by

low energy interactions.

The situation is similar with regard to “elementary” particles. The proton, of course,

is not really elementary, but rather consists of three quarks. But otherwise, the situation

is much as with a nucleus. As for the electron, as far as anyone currently knows, it is

“elementary.” But the point is the same as above; the internal Hilbert space of the particle

consists of a single irreducible subspace under rotations (2-dimensional for the electron),

and on such a space, every vector is proportional to the angular momentum.

Convenient units of magnetic moment are the Bohr magneton,

µB =
eh̄

2mec
, (13.3)

and the nuclear magneton,

µN =
eh̄

2mpc
, (13.4)

where me and mp are respectively the electron and proton mass. The Bohr magneton is

a characteristic magnetic moment of an electron or an atom (such as silver) containing

unpaired electrons. The nuclear magneton is characteristic of a nucleus or an atom in a

spin 0 (singlet) electronic state. Because of the mass factor in the denominator, nuclear

magnetic moments are typically of the order of 10−3 times smaller than electronic magnetic

moments.

Here are some examples of magnetic moments. For the electron we have

µ = −geµB
S

h̄
= −geµB

σ

2
, (13.5)

where

ge = 2
(

1 +
α

2π
+ . . .

)

= 2.00232. (13.6)
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The minus sign in Eq. (13.5) comes from the fact that the charge is negative whereas µB

is positive. The series indicated is the result of a perturbation calculation in quantum

electrodynamics, in which α = e2/h̄c is the fine structure constant. The electron g-factor is

very close to 2, the value predicted by the Dirac equation, as we will see later in the course.

The positron has the same g-factor as the electron, but µ is in the same direction as S since

the charge is positive.

For the proton we have

µ = gpµN
S

h̄
= gpµN

σ

2
, (13.7)

where

gp = 5.588, (13.8)

and for the neutron we have

µ = gnµN
S

h̄
= gnµN

σ

2
, (13.9)

where

gn = −3.823. (13.10)

The neutron is considered to have a negative g-factor, because µ and S are in opposite

directions. The usual electronic charge e is used in µN , even though the neutron is neutral;

and by convention, the proton mass is used in µN , even in the neutron equation (13.9).

Crude models of mixtures of up and down quarks are able to explain the proton and neutron

magnetic moments to within several percent, but no one is able as yet to improve on these

calculations.

Nuclei have a variety of spins and magnetic moments. For the deuteron, a spin-one

particle, we have

µ = gdµN
S

h̄
, (13.11)

where

gd = 0.857, (13.12)

but for the alpha particle, a spin-0 particle, we have µ = 0 exactly. Spin-0 particles cannot

have a magnetic moment, because the spin operator vanishes.

Sometimes the magnetic moments of the proton and neutron are called “anomalous,”

since they differ from the value g = 2 predicted by the Dirac equation. Of course, the true

electron magnetic moment also differs from g = 2, because of the radiative corrections seen

in Eq. (13.6). But these corrections are small and can often be ignored.

The interaction of a spin with a magnetic field is governed by the Hamiltonian,

H = −µ · B, (13.13)
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which must be added to the kinetic and potential energies if orbital degrees of freedom are

important. The Hamiltonian (13.13) is the energy of interaction of a magnetic dipole with

an external field in classical electromagnetic theory; its further justification for particles and

nuclei calls on methods of relativisitic quantum mechanics and field theory, as we will see

in Physics 221B. If only spin degrees of freedom are important, then we can work directly

the Hamiltonian (13.13), in which the ket space is the (2s + 1)-dimensional vector space

of spinors for the given spin s. This space always forms a single irreducible space under

rotations. If we ignore the orbital degrees of freedom, then the magnetic field can be taken

to be a function of time only, B = B(t). In some cases, however, such as the Stern-Gerlach

experiment, the coupling of the spin to the orbital degrees of freedom must be taken into

account, due to gradients in the magnetic field. For the rest of these notes, we will ignore

orbital degrees of freedom, and write Eq. (13.13) in the form,

H = −γB · S, (13.14)

where

γ = g
q

2mc
. (13.15)

Consider first the general problem in which the magnetic field has an arbitrary time

dependence, so that the Schrödinger equation for the time-evolution operator U(t, t0) is

∂U

∂t
=
iγ

h̄
B(t) · SU. (13.16)

If nothing further is said about the time dependence of B, we cannot write down the solution

in explicit form, but we can at least note that the time-evolution operator U is always a

rotation operator. To see this, we consider the infinitesimal time advance implied by the

Schrödinger equation,

U(t+ ∆t) =
[

1 +
iγ∆t

h̄
B(t) · S

]

U(t). (13.17)

The factor in the square brackets is an infinitesimal rotation operator, as we can see if we

compare it to

1 −
i∆θ

h̄
n̂ · S. (13.18)

We see that the axis of the infinitesimal rotation is given by

n̂ = b̂(t), (13.19)

where we write

B(t) = B(t)b̂(t) (13.20)
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for the magnitude and direction of the magnetic field. The angle of the infinitesimal rotation

is given by

∆θ = −γB(t)∆t, (13.21)

or,

ω =
∆θ

∆t
= −γB(t). (13.22)

The angular velocity can also be written as a vector,

ω = ωn̂ = −γB(t), (13.23)

which is either parallel or antiparallel to B, depending on the sign of γ.

We see that as time proceeds, U develops by the composition of a large number of

infinitesimal rotation operators; since the product of rotation operators is always a rotation

operator, U itself is a rotation operator. However, the axis and rate of rotation are in

general functions of time. This is very much as in classical rigid body motion, in which ω

is some function of time, which in general is not constant either in magnitude or direction.

In classical rigid body motion, ω is determined as a function of time by solving the Euler

equations; in the quantum mechanical motion of a charged particle in a magnetic field, ω

is simply given as a function of time by Eq. (13.23). In either case, once ω(t) is known, the

subsequent problem of determining the time-dependent rotation is very similar.

We turn now to some cases in which Eq. (13.16) can be solved explicitly. The simplest

one is that of a spin in a constant magnetic field,

B = Bb̂ = const, (13.24)

so that the Schrödinger equation for the time evolution operator U(t) is

∂U

∂t
=
iγ

h̄
Bb̂ · SU. (13.25)

This equation can be immediately integrated. Previously we have been using the symbol U

for rotation operators, but now we switch to D to avoid confusion with the time-evolution

operator. Then we have,

U(t) = exp
[ i

h̄
ωt(b̂ · S)

]

= D(b̂,−ωt), (13.26)

where

ω = γB = g
qB

2mc
. (13.27)

If g ≈ 2, as in the case of electrons, this frequency (spin precession frequency) is very close

to the classical orbital frequency qB/mc of the particle in the given magnetic field. Certain

so-called g − 2 experiments exploit this fact to measure the small difference between the

two frequencies.
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B

〈S〉(t)

ω

Fig. 13.1. In a constant magnetic field, 〈S〉 precesses
about the field direction at frequency ω = γB.

B0

B1(t)
ω1

Fig. 13.2. The field in magnetic resonance exper-
iments consists of a constant field B0 plus a time-
dependent field B1(t) which is perpendicular to B0

and which rotates about B0 at frequency ω1.

Given U(t), it is straightforward to find the time evolution of the expectation value of

the spin. We have

〈S〉(t) = 〈ψ(t)|S|ψ(t)〉 = 〈ψ0|D(b̂,−ωt)†SD(b̂,−ωt)|ψ0〉

= R(b̂,−ωt)〈ψ0|S|ψ0〉 = R(b̂,−ωt)〈S〉(0), (13.28)

where we have used the adjoint formula (11.57). We see that the expectation value of S

rotates clockwise (for ω > 0) about the direction of the magnetic field, sweeping out a cone.

This is illustrated in Fig. 13.1.

A more interesting case occurs in magnetic resonance experiments. Here the magnetic

field consists of a constant field B0 = B0b̂0, plus a time-dependent field B1(t) which

is perpendicular to B0 and which rotates clockwise in the perpendicular plane at some

frequency ω1. These fields are illustrated in Fig. 13.2. We express the time-dependence of

B1 by writing,

B1(t) = R1(t)B10, (13.29)

where B10 is a constant vector [the initial value of B1(t)] perpendicular to B0, and where

R1(t) is a time-dependent rotation about the direction of B0,

R1(t) = R(b̂0,−ω1t). (13.30)

The purpose of the time-dependent field is to induce flips in the spins of particles which

are precessing in the constant field B0. As would be expected, the flipping is most efficient
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at resonance, i.e., when the frequency ω1 of the time-dependent field equals the frequency

ω0 = γB0 of precession in the constant field. Notice that ω0 depends on the strength

of the constant field B0, whereas ω1 is the frequency of the time-dependent field, and is

independent of its magnitude.

Since B0 is an axis of the rotation R1(t), we have B0 = R1(t)B0, so that the overall

magnetic field can be written,

B(t) = R1(t)(B0 + B10). (13.31)

This allows us to transform the Schrödinger equation as follows:

∂U

∂t
=
iγ

h̄

[

R1(B0 + B10)
]

· SU =
iγ

h̄
(B0 + B10) ·

(

R
−1

1
S
)

U

=
iγ

h̄
(B0 + B10) · (D1SD

†
1
)U, (13.32)

where we use the adjoint formula (11.57) in the final step, and where the operator D1 is

the time-dependent spinor rotation corresponding to R1,

D1 = D(b̂0,−ω1t) = exp
[ i

h̄
ω1t(b̂0 · S)

]

. (13.33)

We now multiply Eq. (13.32) through by D†
1
, to obtain

D†
1

∂U

∂t
=
∂(D†

1
U)

∂t
−
∂D†

1

∂t
U =

∂(D†
1
U)

∂t
+
i

h̄
ω1(b̂0 · S)(D†

1
U)

=
iγ

h̄
(B0 + B10) · S(D†

1
U), (13.34)

or,

∂(D†
1
U)

∂t
=
iγ

h̄
(Beff · S)(D†

1
U), (13.35)

where

Beff =
(

B0 −
ω1

γ

)

b̂0 + B10. (13.36)

We will write this effective magnetic field in the form,

Beff = Beff b̂eff , (13.37)

where

Beff =

√

(

B0 −
ω1

γ

)2

+B2

10. (13.38)

We will also denote the angle between b̂0 and b̂eff by θ, so that

sin θ =
B10

Beff

. (13.39)
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B0b0

Beff

B10

θ

(

B0 −
ω1

γ

)

b̂0

Fig. 13.3. In the rotating frame, the field B1 =
B10 is stationary, and B0 is reduced in magnitude by
ω1/γ. The resulting field is Beff , which is constant in
the rotating frame.

B0

â(t)

ω1

Ω

〈S〉(t)θ

Fig. 13.4. The expectation value of the spin S pre-
cesses about the axis â with frequency Ω, while that
axis itself precesses about B0 with frequency ω1.

The physics of these transformations is that we have effectively gone over to a frame

rotating at frequency ω1. In this frame, the field B1 is stationary (and is represented by the

vector B10), while the constant field B0 is reduced in magnitude by ω1/γ by the effects of

the rotation. As is well known, inertial effects in a rotating frame can be used to simulate

(or cancel) the effects of a magnetic field; this is known as Larmor’s theorem. In the present

case, the net field in the rotating frame is Beff , which is constant.

We see that Eq. (13.35) has the same form as Eq. (13.25), the Schrödinger equation in a

constant field, with U replaced by D†
1
U and B replaced by Beff . The solution is immediate;

it is

U(t) = D(b̂0,−ω1t)D(b̂eff ,−Ωt), (13.40)

where

Ω = γBeff =
√

(ω0 − ω1)2 + γ2B2
10
. (13.41)

The frequency Ω is the Rabi flopping frequency.

As before, we can use the solution (13.40) to find the evolution of the expectation value

of the spin. We find,

〈S〉(t) = R(b̂0,−ω1t)R(b̂eff ,−Ωt)〈S〉(0). (13.42)

Thus, 〈S〉 sweeps out a cone at frequency Ω about an axis â which makes an angle θ with

the direction b̂0, while this axis itself sweeps out a cone about b̂0 at frequency ω1. This
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is illustrated in Fig. 13.4. The direction b̂eff is the initial direction of the axis at t = 0, so

that

â(t) = R(b̂0,−ω1t)b̂eff . (13.43)

Equation (13.42) can be expressed explicitly in terms of the time-dependent axis â(t) by

use of the exponentiated adjoint formula, Eq. (9.33):

〈S〉(t) = R
(

â(t),−Ωt
)

R(b̂0,−ω1t)〈S〉(0), (13.44)

which provides another way of visualizing the time evolution of 〈S〉.

As a sample calculation, suppose we have a spin- 1

2
particle, initially in an up state,

|ψ0〉 = |+〉, and suppose we ask for the probability at a later time of finding the spin in the

down state |−〉. We take the direction B0 to lie along the z-axis, and we place the vectors

B10 and b̂eff in the x-z plane. To compute the probability amplitude for the 1

2
→ − 1

2

transition, we use Eq. (13.40) to obtain

〈−|U(t)|+〉 = 〈−|D(ẑ,−ω1t)D(b̂eff ,−Ωt)|+〉 = e−iω1t/2 〈−|D(b̂eff ,−Ωt)|+〉. (13.45)

But since

b̂eff = ẑ cos θ + x̂ sin θ, (13.46)

we have

〈−|U(t)|+〉 = ie−iω1t/2 sin θ sin
Ωt

2
. (13.47)

Thus, the transition probability is

P 1

2
→− 1

2

= sin2 θ sin2 Ωt

2
. (13.48)

In the resonant case, ω1 = ω0, we have Beff = B10 and θ = π/2, so that the axis of the

rotating cone lies in the x-y plane. In this case, the transition probability (13.48) reaches a

maximum value of unity when t = π/Ω.


