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Notes 11

Representations of the Angular Momentum Operators

and Rotations

In Notes 10, the angular momentum J of a quantum system was defined by Eq. (10.7)

as the infinitesimal generator of rotations, and it was shown that the components of J must

satisfy the commutation relations (10.16) in order that the quantum rotation operators

should provide a representation of the classical rotations. We repeat these commutation

relations here:

[Ji, Jj ] = ih̄ εijk Jk.
(11.1)

Our strategy in finding a representation of the rotations is first to find a representation

of the angular momentum commutation relations, that is, a set of three Hermitian operators

(J1, J2, J3) which satisfy Eq. (11.1), and then to exponentiate linear combinations of them

according to

U(n̂, θ) = exp
[

− i

h̄
θ(n̂ · J)

]

,

(11.2)

which gives the rotation operators U(n̂, θ) themselves. In Notes 10, we carried out this

strategy in detail, working with the specific representation of the angular momentum com-

mutation relations given by J = (h̄/2)σ, which gave us rotation operators for spin- 1

2
sys-

tems.

In these notes we will solve the representation problem for the angular momentum

commutation relations in all generality. That is, we will seek and find the most general

vector (J1, J2, J3) of Hermitian operators which satisfy Eq. (11.1). After we have done this,

we will explore the properties of the rotation operators which are generated from the angular

momentum operators by Eq. (11.2). We will find that the rotation operators created in this

manner sometimes form a double-valued representation of the classical rotations, just as

we found in the case of spin- 1

2
rotations in Notes 10. Nevertheless, the existence of double-

valued representations of the rotations does not diminish the importance of finding the

representations of the angular momentum commutation relations.

Therefore let us assume that we have some vector space upon which three Hermitian

operators (J1, J2, J3) act, such that the commutation relations (11.1) are satisfied. We make
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no other assumptions about these operators or the vector space upon which they act, and,

in particular, we make no assumptions about the dimensionality of the vector space. It pays

to treat this problem in some generality, because there is a wide variety of circumstances

in physical problems where such operators and commutation relations arise. For example,

the vector space could be a ket space, in which case the operators (J1, J2, J3) are ordinary

operators in quantum mechanics. The ket space could belong to the spatial degrees of

freedom for a quantum system (i.e., it could be a wave function space); it could be a ket

space for spin degrees of freedom; it could be the tensor product of such spaces, perhaps

representing a multiparticle system; or it could be a subspace of such spaces.

In fact, the vector space need not be a ket space. It could be a vector space of operators,

as will be discussed in later notes on irreducible tensor operators and the Wigner-Eckart

theorem. It could be ordinary 3-dimensional space, in which case we could “rediscover” the

theory of classical rotations as in Notes 9. It could be a space of wave fields for a classical

wave system, as in the multipole expansion for classical electromagnetic fields. There are

many possibilities. Nevertheless, to be specific, in the following discussion we will proceed

as if the vector space is a ket space, and we will use bra-ket notation for the vectors of the

space.

We will seek the most general form which the vector of operators (J1, J2, J3) can take,

given that it satisfies Eq. (11.1). Among other things, we will be interested in the matrices

which represent these operators in some appropriately chosen basis.

We begin by constructing the positive definite operator J 2,

J2 = J2
1 + J2

2 + J2
3 , (11.3)

which, as an easy calculation shows, commutes with all three components of J:

[J2,J] = 0. (11.4)

Since J2 commutes with J, it commutes also with any function of J. An operator with this

property is called a Casimir operator.

Since J2 and J commute, we can construct simultaneous eigenkets of J 2 and one of

the components of J, which is conventionally taken to be J3. We denote the eigenvalues of

J2 and J3 by h̄2a and h̄m, respectively, but at this point we make no assumptions about

the allowed values which a and m might take on (positive, negative, integer, fraction, etc.).

We denote the simultaneous eigenkets by |αam〉, where the index α is introduced to resolve

possible degeneracies.

Actually, for pedagogical reasons, it is convenient to assume at first that there are no

degeneracies, that is, that whatever simultaneous eigenkets of J 2 and J3 might exist, they
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are always nondegenerate. When we have analyzed this case, it will be easy to come back

and consider what happens when there are degeneracies. Therefore for now we will dispense

with the index α, and write

J2|am〉 = h̄2a|am〉,
J3|am〉 = h̄m|am〉. (11.5)

Our first conclusion is that a ≥ 0, which follows from the fact that J 2 is nonnegative

definite. Therefore we can set

a = j(j + 1), (11.6)

where j ≥ 0. This substitution simplifies some of the algebra to come later.

Next we define the ladder or raising and lowering operators,

J± = J1 ± iJ2, (11.7)

which satisfy the commutation relations,

[J3, J±] = ±h̄J±, (11.8)

[J+, J−] = 2h̄J3, (11.9)

[J2, J±] = 0. (11.10)

We also have the relations,

J2 =
1

2
(J+J− + J−J+) + J2

3 , (11.11)

J−J+ = J2 − J3(J3 + h̄), (11.12)

J+J− = J2 − J3(J3 − h̄). (11.13)

Now let us suppose that some nonzero eigenket |jm〉 with definite values j,m exists.

Then by Eqs. (11.12) and (11.13), we have

〈jm|J−J+|jm〉 = h̄2[j(j + 1) − m(m + 1)]

= h̄2(j − m)(j + m + 1) ≥ 0, (11.14)

〈jm|J+J−|jm〉 = h̄2[j(j + 1) − m(m − 1)]

= h̄2(j + m)(j − m + 1) ≥ 0, (11.15)

where the inequality follows from the fact that the left hand sides are the squares of ket

vectors. Consider first Eq. (11.14), which implies either

j − m ≥ 0 and j + m + 1 ≥ 0, (11.16)
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or

j − m ≤ 0 and j + m + 1 ≤ 0. (11.17)

But Eq. (11.17) implies j ≤ − 1

2
, which is impossible since j ≥ 0, so Eq. (11.16) must be

true. But Eq. (11.16) is equivalent to

−j − 1 ≤ m ≤ j. (11.18)

Similarly, Eq. (11.15) implies,

−j ≤ m ≤ j + 1. (11.19)

Taken together, Eqs. (11.18) and (11.19) imply

−j ≤ m ≤ +j, (11.20)

which is a restriction on the eigenvalues j,m which are allowed.

Now we return to Eq. (11.14), and consider the case that the matrix element should

vanish. This occurs only if J+|jm〉 = 0, which implies either m = j or m = −j − 1. But in

view of Eq. (11.20), the latter is impossible, so we see that J+|jm〉 = 0 if and only if m = j.

Similarly, the vanishing of the matrix element in Eq. (11.15) implies J−|jm〉 = 0, which

occurs if and only if m = −j. For all other values of m, J+|jm〉 or J−|jm〉 are nonzero kets

(assuming as we are that |jm〉 is nonzero).

But it is easy to show that if m 6= j, then J+|jm〉 is a simultaneous eigenket of J 2 and

J3 with eigenvalues j(j + 1)h̄2 and (m + 1)h̄, respectively, for we have

J2
(

J+|jm〉
)

= J+J2|jm〉 = j(j + 1)h̄2
(

J+|jm〉
)

,

J3

(

J+|jm〉
)

= (J+J3 + h̄J+)|jm〉 = (m + 1)h̄
(

J+|jm〉
)

. (11.21)

From this it immediately follows that

m = j − n1, (11.22)

where n1 is an integer, for if this were not so, we could successively apply J+ to |jm〉 (which

we are assuming to be nonzero), and generate nonzero kets with successively higher values

of m until the rule (11.20) was violated. Similarly, we show that if m 6= −j, then J−|jm〉 is

a simultaneous eigenket of J 2 and J3 with eigenvalues j(j +1)h̄2 and (m−1)h̄, respectively,

and from this we conclude that

m = −j + n2, (11.23)

where n2 is another integer.
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But by combining Eqs. (11.22) and (11.23), we conclude that 2j is an integer, so that

the only allowed values of j are integral and half-integral,

j = 0, 1

2
, 1, 3

2
, . . . . (11.24)

We emphasize that the j values listed are those which are compatible with the commutation

relations (11.1); in any particular realization of those commutation relations, it may be that

only some j values are present, while others are absent. But if some j value does occur,

then all m values in the range,

m = −j,−j + 1, . . . ,+j, (11.25)

also occur, for if any one m value in this list occurs, i.e., if a nonzero eigenket |jm〉 exists,

then all other nonzero eigenkets with the same j value but other m values in the range

(11.25) can be generated from the given one by raising and lowering operators. Thus, the

eigenvalue j(j + 1)h̄2 of J2 is (2j + 1)-fold degenerate.

Since by assumption the simultaneous eigenkets of J 2 and J3 are nondegenerate, we

must have

J+|jm〉 = c|j,m + 1〉,

J−|jm〉 = c′|j,m − 1〉, (11.26)

where c, c′ are complex numbers. These numbers can be determined to within a phase by

squaring both sides,

〈jm|J−J+|jm〉 = |c|2 = h̄2(j − m)(j + m + 1),

〈jm|J+J−|jm〉 = |c′|2 = h̄2(j + m)(j − m + 1). (11.27)

To determine the phases of c, c′, we first choose an arbitrary phase convention for the

stretched state |jj〉, and then link the phases of |jm〉 for m < j to that of |jj〉 by using

lowering operators and demanding that c′ be real and positive. Having done this, we can

raise the states back up with raising operators, and since the product J+J− is nonnegative

definite, we find that c is also real and positive. Thus we obtain,

J+|jm〉 = h̄
√

(j − m)(j + m + 1) |j,m + 1〉,

J−|jm〉 = h̄
√

(j + m)(j − m + 1) |j,m − 1〉. (11.28)

These phase conventions are standard in the theory of angular momentum and rotations,

but of course there is no physics in such conventions.



– 6 –

Now let us go back and worry about degeneracies, and write |αjm〉 for the simultaneous

eigenkets of J2 and J3. As usual, we can think of α as an index for an arbitrarily chosen

orthonormal basis in the degenerate eigenspaces of J 2 and J3; at first we imagine that

a different, arbitrary choice of such basis vectors is made in every different degenerate

eigenspace (i.e., for different values of j,m). We may also imagine that the dimensionalities

of these subspaces are different for different values of j,m, i.e., that α has the range,

α = 1, . . . , Njm, where Njm is the order of the degeneracy of subspace jm. But in fact it is

easy to see that the order of these degeneracies must be independent of m. For let us suppose

that the dimensionality of the stretched eigenspace (jm) = (jj) is Njj . Then by applying

the lowering operator J− to the linearly independent states |αjj〉, α = 1, . . . , Njj , we obtain

a set of Njj linearly independent kets in the (jm) = (j, j − 1) eigenspace. Therefore the

dimensionality of the latter eigenspace is at least Njj . Suppose it is Nj,j−1 ≥ Njj . Then

we have Nj,j−1 basis kets |αj, j − 1〉 in the eigenspace (jm) = (j, j − 1), which we can raise

with J+ to obtain Nj,j−1 linearly independent kets in the (jm) = (jj) subspace. Therefore

Nj,j−1 ≤ Njj , which is consistent only if Nj,j−1 = Njj . Repeating this argument, we see

that all the eigenspaces (jm) for given value of j but for m in the range (11.25) have the

same dimensionality, which can depend only on j. We denote this dimensionality by Nj ,

which we call the multiplicity of the given j value. The multiplicity can take on any value

from 0 (in which case the j value does not occur) to ∞.

As for the eigenkets, they have the form,

|αjm〉, α = 1, . . . , Nj , m = −j, . . . ,+j, (11.29)

and satisfy the orthogonormality relations,

〈α′j′m′|αjm〉 = δαα′ δjj′ δmm′ . (11.30)

We will say that these eigenkets |αjm〉 form the standard basis in any space on which some

representation of the angular momentum commutation relations acts.

Since the eigenspaces for fixed j but different values of m are linked by raising and

lowering operators, it does not make sense to choose an arbitrary orthonormal basis (indexed

by α) separately for each one, but rather to choose such a basis in one of the eigenspaces,

say, the stretched one (jm) = (jj), and then to define the orthonormal basis in the other

eigenspaces by applying lowering operators to the stretched basis. With this understanding,

the relations (11.28) become

J+|αjm〉 = h̄
√

(j − m)(j + m + 1) |αj,m + 1〉,

J−|αjm〉 = h̄
√

(j + m)(j − m + 1) |αj,m − 1〉. (11.31)
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From these and earlier relations, we can write down the matrix elements of the raising and

lowering operators, as well as those of J 2 and J3, in the basis |αjm〉. These are

〈α′j′m′|J3|αjm〉 = mh̄ δα′α δj′j δm′m,

〈α′j′m′|J+|αjm〉 = h̄
√

(j − m)(j + m + 1) δα′α δj′j δm′,m+1,

〈α′j′m′|J−|αjm〉 = h̄
√

(j + m)(j − m + 1) δα′α δj′j δm′,m−1,

〈α′j′m′|J2|αjm〉 = h̄2j(j + 1) δα′α δj′j δm′m. (11.32)

The matrix elements of J1 and J2 follow trivially from those of J± by

J1 =
1

2
(J+ + J−), J2 =

1

2i
(J+ − J−). (11.33)

The matrix elements (11.32) are diagonal in j and α, and furthermore depend only on j and

m but not on α. They follow directly from the angular momentum commutation relations

(11.1) (and on some phase conventions), but they do not depend in any way on the specific

nature of the operators which satisfy these commutation relations. Thus, the same matrix

elements apply to spin, orbital angular momentum, isospin, etc.

We have now completly solved the problem of finding all possible representations of

operators J which satisfy the commutation relations (11.1), for we have shown that there

exists a basis (the standard basis |αjm〉) in which the matrix elements of (J1, J2, J3) are

given by Eqs. (11.32). It is useful to visualize the matrices representing the angular mo-

mentum operators in this basis. To do this, we order the basis kets |αjm〉 in such a way

that m varies most rapidly, α next most rapidly, and j least rapidly. Then the matrices

are block-diagonal, beginning with N0 copies of the 1 × 1 matrices corresponding to j = 0,

followed by N1/2 copies of the 2 × 2 matrices corresponding to j = 1

2
, etc. For example, if
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N0 = 3, N1/2 = 1, N1 = 2, etc., then the matrices will have the following structure:

〈α′j′m′|X|αjm〉 =





















































0

0

0

1

2

1

1

. . .





















































. (11.34)

Here X stands for any of the operators, (J1, J2, J3), or for any function of these operators,

such as J±, J2, or, most notably, the rotation operators exp(−iθn̂ · J/h̄). In all cases, all

copies of the j = 0 matrices are identical, all copies of the j = 1

2
matrices are identical, etc.,

since their matrix elements depend on m and j but not α. The matrices which go into the

blocks on the diagonal depend on which operator X is referred to, but the block structure

itself is the same for all choices of X.

Whenever a matrix representing an operator has a block-diagonal form, it means that

the operator possesses invariant subspaces; this is the abstract meaning of the block-diagonal

structure. A subspace is considered invariant under the action of an operator if every vector

in that subspace is mapped into another vector in the same subspace by the operator. In

the present case, the invariant subspaces are the those spanned by the basis kets |αjm〉 for

fixed values of α and j but variable m, since these are the values of (αjm) which correspond

to one of the blocks. For example, the second j = 1 block (a 3 × 3 block) in Eq. (11.34)

corresponds to α = 2, j = 1, m = 1, 0,−1. Any linear combination of the basis vectors

|αjm〉 for these three values of (αjm) is mapped into another such linear combination by

any function of the angular momentum operators.

Let us denote the invariant subspaces by Eαj , so that

Eαj = span{|αjm〉| − j ≤ m ≤ j}, (11.35)

and so that

dim Eαj = 2j + 1. (11.36)
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It is a fact, not proven here but not hard to prove, that the subspaces Eαj possess no

smaller subspaces which are invariant under all components of J. Thus, these subspaces

are invariant subspaces of minimal dimensionality, in a sense. On account of this property,

these subspaces are called irreducible invariant subspaces. We shall call them irreducible

subspaces for short, and for our purposes their most important property is that they are

invariant under the action of the rotation operators.

Whenever an operator has an invariant subspace, it is possible to restrict that operator

to the subspace (as discussed earlier in Notes 1). For example, if we choose a basis in

the invariant subspace, the operator restricted to the subspace becomes represented by

a matrix whose size is the dimensionality of the subspace. In the present case, any of

the operators X (any function of the angular momentum operators) can be restricted to

the irreducible subspaces Eαj , whereupon it becomes represented by a (2j + 1) × (2j +

1) matrix, and in the standard basis the components of this matrix are independent of

α. These are the matrices sitting on the diagonal in Eq. (11.34). In the case that X

stands for the components of J, we obtain Hermitian matrices representing J which satisfy

the angular momentum commutation relations (11.1); these matrices are said to form an

irreducible representation of those commutation relations. In the case that X stands for

the rotation operators exp(−iθn̂ · J/h̄), we obtain unitary matrices which reproduce the

multiplication law for rotations, either in the sense of Eq. (10.3) or (10.31); these matrices

are said to form an irreducible representation of the rotations. In either case, there is

a distinct irreducible representation for each value of j. We see that when studying the

general problem of the representations of the angular momentum commutation relations

or the rotation operators, it suffices to study the irreducible representations because an

arbitrary representation consists of copies of irreducible representations as illustrated by

Eq. (11.34).

Let us restrict the angular momentum operators to a single irreducible subspace, and

record the matrix elements. We can suppress the index α when writing the basis vectors of

the irreducible subspace, since α is constant on such a subspace and the matrix elements do

not depend on α. Thus, we write these basis vectors as |jm〉. Furthermore, j is fixed in a

single irreducible subspace, and only m varies. The matrix elements themselves are simple

transcriptions of Eq. (11.32):

〈jm′|J3|jm〉 = mh̄ δm′m,

〈jm′|J+|jm〉 = h̄
√

(j − m)(j + m + 1) δm′,m+1,

〈jm′|J−|jm〉 = h̄
√

(j + m)(j − m + 1) δm′,m−1,
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〈jm′|J2|jm〉 = h̄2j(j + 1) δm′m (11.37)

These matrix elements do not depend on which irreducible subspace we work with, since they

are independent of α. Nor do they depend on the details of the physical interpretation of

the operators J (orbital angular momentum, spin angular momentum, isospin, etc.). They

are universal matrices applying to any problem involving angular momenta, and depend

only on the commutation relations (11.1) plus the various conventions we have established.

Let us display some examples of the irreducible representations of the angular momen-

tum operators. We will content ourselves with the matrices representing J3 and J+, since

the matrix for J− is the Hermitian conjugate of that for J+, and the matrices for J1 and

J2 can be obtained from Eq. (11.33). Nor do we bother with J 2, since by Eq. (11.37), its

matrix representation on an irreducible subspace is a multiple of the identity.

First, in the case j = 0, we have

[Jz] = h̄ ( 0 ) , (11.38)

and

[J+] = h̄ ( 0 ) . (11.39)

In this case, the indices m, m′ take on the single value 0, and all three components of J are

represented by the 1 × 1 matrix containing the single element 0.

In the case j = 1

2
, we have

[Jz ] = h̄

(

1

2
0

0 − 1

2

)

, (11.40)

and

[J+] = h̄

(

0 1
0 0

)

. (11.41)

Here and below we order the m values from largest to smallest as we move across rows or

down columns, so that, for example, the upper right corner of these matrices correspond to

m = 1

2
, m′ = − 1

2
. These matrices for the case j = 1

2
are of course equivalent to J = (h̄/2)σ.

In the case j = 1, we have

[Jz] = h̄





1 0 0
0 0 0
0 0 −1



 , (11.42)

and

[J+] = h̄





0
√

2 0
0 0

√
2

0 0 0



 . (11.43)
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Finally, for j = 3/2, we have

[Jz ] = h̄









3

2
0 0 0

0 1

2
0 0

0 0 − 1

2
0

0 0 0 − 3

2









, (11.44)

and

[J+] = h̄







0
√

3 0 0
0 0 2 0
0 0 0

√
3

0 0 0 0






. (11.45)

In all these cases, the matrix for J3 is diagonal, naturally because we are using an

eigenbasis of the operator J3. The matrices for J± are nonzero only on one diagonal above

or below the main diagonal, and are real. Therefore by Eq. (11.33), the matrix for J1 is

real and that for J2 is pure imaginary. As mentioned, the matrix for J 2 is a multiple of the

identity.

When we exponentiate the angular momentum operators in accordance with Eq. (11.2),

we obtain the rotation operators. Similarly, when we exponentiate the irreducible matrix

representations of the angular momentum operators, we obtain the irreducible represen-

tations of the rotation operators. These can be expressed in axis-angle form or in Euler

angle form. The symbol D is a standard notation for these matrices, standing for German

Drehung (“rotation”), or perhaps for German Darstellung (“representation”):

Dj
mm′(n̂, θ) = 〈jm|U(n̂, θ)|jm′〉, (11.46)

or

Dj
mm′(α, β, γ) = 〈jm|U(α, β, γ)|jm′〉. (11.47)

We note in particular that rotations about the z-axis are especially simple in the basis

we have chosen, because the matrices are diagonal:

Dj
mm′(ẑ, θ) = 〈jm|e−iθJz/h̄|jm′〉 = e−imθ δmm′ . (11.48)

This means that two of the factors in the Euler angle representation of the rotation operators

[see Eq. (9.42)] are diagonal, so that

Dj
mm′(α, β, γ) = 〈m|e−iαJz/h̄ e−iβJy/h̄ e−iγJz/h̄|m′〉

=
∑

m1,m2

〈m|e−iαJz/h̄|m1〉〈m1|e−iβJy/h̄|m2〉〈m2|e−iγJz/h̄|m′〉

=
∑

m1,m2

e−iαm1 δmm1
〈m1|e−iβJy/h̄|m2〉e−iγm′

δm2m′

= e−iαm−iγm′

dj
mm′(β), (11.49)
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where

dj
mm′(β) = 〈m|e−iβJy/h̄|m′〉. (11.50)

In Eq. (11.49), we only sum over m in the resolution of the identity, because we are working

on a single irreducible subspace. The matrix dj
mm′(β) is called the reduced rotation matrix;

we see that in the Euler angle decomposition of an arbitrary rotation, only the rotation about

the y-axis is nontrivial, and it depends only on the one Euler angle β. Furthermore, since

the matrix elements of J2 are purely imaginary under our conventions, the reduced matrix

elements dj
mm′(β) are purely real. This is one of the conveniences of the zyz-convention for

Euler angles in quantum mechanics.

Therefore when tabulating the irreducible matrix representations of the rotation oper-

ators in Euler angle form, it suffices to tabulate only the reduced rotation matrices. The

first few of these are easy to work out, and for more complicated cases, there exist tables

or explicit formulas. For the case j = 0, the result is trivial:

d0
mm′(β) = ( 1 ) . (11.51)

We see that a rotation does nothing to a system of zero angular momentum, such as a spin-0

particle. For the case j = 1/2, we use the properties of the Pauli matrices to obtain

d
1/2

mm′(β) = cos(β/2) − iσy sin(β/2) =

(

cos(β/2) − sin(β/2)

sin(β/2) cos(β/2)

)

. (11.52)

For the case j = 1, we can find recursions among the powers of the matrix for Jy, and sum

the exponential series to obtain

d1
mm′(β) =





1

2
(1 + cos β) − sinβ/

√
2 1

2
(1 − cos β)

sinβ/
√

2 cos β − sinβ/
√

2
1

2
(1 − cos β) sinβ/

√
2 1

2
(1 + cos β)



 . (11.53)

This calculation is repeated in Sakurai.

The matrix elements for J3, given by Eq. (11.48), contain an important lesson. Since m

is integral (half-integral) when j is integral (half-integral), and since the phases e−imθ occur

on the diagonal of the matrix elements for J3, we see that the irreducible representations

of the rotation operators form a double-valued representation of SO(3) in the case of half-

integral j, and a single-valued representation in the case of integral j. In all cases, the

D-matrices form a (proper, single-valued) irreducible representations of the group SU(2).

The D-matrices have many properties, of which we mention only one here. If U is a ro-

tation operator and Dj
mm′(U) the corresponding matrix, then the operator U−1 corresponds

to the matrix D−1. But since U is unitary, so is the matrix D, and we have

Dj
mm′(U

−1) = [Dj(U)−1]mm′ = [Dj(U)†]mm′ = Dj∗
m′m(U). (11.54)
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Often in quantum mechanics we need to find the action of a rotation operator on some

state. When the state is expanded in terms of the standard basis, the problem is equivalent

to rotating a vector |αjm〉 of the standard basis. That is, we seek an expression for U |αjm〉,
where U is a rotation operator. But since the irreducible subspaces are invariant under

rotations, the vector U |αjm〉 must be expressible as a linear combination of other basis

vectors in the same irreducible subspace, i.e.,

U |αjm〉 =
∑

m′

|αjm′〉〈αjm′|U |αjm〉 =
∑

m′

|αjm〉〈jm′|U |jm〉. (11.55)

Notice that in the first sum we have effectively introduced a resolution of the identity, but

only in the irreducible subspace. That is, there is no sum over α or j, because U is diagonal

in α and j, which is the same as saying that the irreducible subspace is invariant under U .

In the second sum we have suppressed the α indices in the matrix elements of U , since these

matrix elements do not depend on α; the resulting matrix element is just a component of a

D matrix. Thus, we have

U |αjm〉 =
∑

m′

|αjm′〉Dj
m′m(U),

(11.56)

which is often useful. Notice the positions of the indices m′,m in this formula.

We consider one final topic in the theory of rotation operators, namely, the generalized

adjoint formula. This topic is somewhat disjoint from the rest of the material in these notes,

since it does not depend on the theory of irreducible representations.

We recall that we derived a version of the adjoint formula for classical rotations in

Eq. (9.31), and later we found an analogous formula, Eq. (10.24), for spin- 1

2
rotations. We

now generalize this to arbitrary representations of the rotation operators. The generalization

is obvious; it is

UJU † = R
−1J,

(11.57)

where U = U(n̂, θ) and R = R(n̂, θ). Notice that the left hand side is quadratic in U , so

in the case of double-valued representations of SO(3), it does not matter which U operator

we choose to represent the rotation R.

To prove Eq. (11.57), we define the operator vector,

X(θ) = U(n̂, θ)JU(n̂, θ)†, (11.58)

and we note the initial condition,

X(0) = J. (11.59)
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Next we obtain a differential equation for X(θ):

dX(θ)

dθ
=

dU

dθ
JU † + UJ

dU †

dθ
= − i

h̄
U [n̂ · J,J]U †

= −n̂×(UJU †) = −(n̂ · J)X. (11.60)

The solution is

X(θ) = exp
(

−θn̂ · J
)

X(0) = R(n̂, θ)−1J, (11.61)

which is equivalent to the adjoint formula (11.57).

Finally, we can dot both sides of Eq. (11.57) by −iθn̂/h̄ and exponentiate, to obtain

a formula analogous to Eq. (9.33). After placing 0 subscripts on U and R for clarity, the

result is

U0U(n̂, θ)U †
0 = U(R0n̂, θ), (11.62)

where U0 and R0 are corresponding quantum and classical rotations. Notice again that the

left hand side is quadratic in U0, so that in the case of double-valued representations it does

not matter which U0 operator we choose to represent the rotation R0.


