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Notes 21

Hyperfine Structure in Hydrogen

and Alkali Atoms

Hyperfine effects in atomic physics are due to the interaction of the atomic electrons

with the electric and magnetic multipole fields of the nucleus (not counting the electric

monopole field, which is the Coulomb field). Hyperfine structure occurs on a smaller energy

scale than the fine structure, hence the name. The physical origin of hyperfine effects,

however, is quite different. In practice, the most important hyperfine effects are those

due to the magnetic dipole and electric quadrupole fields of the nucleus. Higher multipole

moments of the nucleus are important in nuclear physics, but not usually in atomic physics.

In these notes, we concentrate on magnetic dipole hyperfine effects in hydrogen and alkali

atoms, in which the the atomic electron interacts with the magnetic dipole field of the

nucleus in both its orbital and spin degrees of freedom. This is much like the interaction

of an atomic electron with an external magnetic field, except that in the case of hyperfine

effects the source of the magnetic field (the nucleus) is a quantum mechanical system in its

own right. Therefore the interaction causes the dynamics of the electron to become coupled

to that of the nucleus, so that the Hilbert space is enlarged, new quantum numbers arise,

and atomic energy levels are split and shifted.

We begin with the nucleus, which we assume to be in its ground state or some long-

lived excited state. We denote the spin of the nucleus by I, so that I 2 = i(i + 1)h̄2. (We

reserve the symbol S for the electron spin.) The nuclear Hilbert space is

Enucl = span{|imi〉,mi = −i, . . . , i}. (21.1)

In actual stable nuclei, the spin ranges from i = 0 to i = 15/2.

The nucleus can possess various electromagnetic multipole moments, depending on the

value of the spin i. The allowed moments include the following:

Electric monopole 1 = 20,

Magnetic dipole 2 = 21,

Electric quadrupole 4 = 22,

Magnetic octupole 8 = 23,

(21.2)

etc., which are sometimes referred to as 2k-pole moments as indicated by the table. There

are two rules which govern the allowed multipole moments of a nucleus. The first is that
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a 2k-pole can occur only if k ≤ 2i. For example, the proton with i = 1
2

can (and does)

possess an electric monopole moment and a magnetic dipole moment, but not an electric

quadrupole moment. The deuteron with i = 1 can (and does) possess an electric quadrupole

moment, but the alpha particle with i = 0 can possess only the electric monopole moment.

The second rule is that electric 2k-poles with k = odd and magnetic 2k-poles with k = even

are not allowed.

The rule k ≤ 2i follows from the transformation properties of the basis kets |mi〉 under

rotations (we suppress the index i, which is redundant). For suppose we have an operator

A which acts on the nuclear Hilbert space. This operator can be expanded in terms of basis

operators |mi〉〈m
′

i|, according to

A =
∑

mi,m′

i

|mi〉〈mi|A|m
′

i〉〈m
′

i| =
∑

mi,m′

i

Amim′

i
|mi〉〈m

′

i|, (21.3)

where

Amim′

i
= 〈mi|A|m

′

i〉. (21.4)

But since the kets |mi〉 transform under rotations according to the irreducible represen-

tation j = i, and since the bras 〈m′

i| also transform according to the same irreducible

representation, the operator |mi〉〈m
′

i| transforms according to

i⊗ i = 0 ⊕ . . .⊕ 2i. (21.5)

Therefore any operator which acts on the nuclear spin space can be represented as a sum

of irreducible tensor operators of order not exceeding k = 2i. But the 2k-pole moment of

the nucleus is, in fact, a order-k irreducible tensor operator, so k ≤ 2i.

As for the second rule, the exclusion of odd electric 2k-poles and even magnetic 2k-

poles follows from parity conservation. In fact, small parity-violating effects (one must also

worry about time-reversal) may allow nuclei and elementary particles to have some of the

moments excluded from the table above. For example, the proton or the electron may

have an electric dipole moment, but if such moments exist, they are certainly very small.

The detection of such moments or the placing of upper bounds on them is an experimental

matter which is currently being pursued in this department.

Let us suppose the nucleus has a spin of at least 1
2
, so that a magnetic dipole moment

is allowed. As discussed in Notes 13, the magnetic moment µ of the nucleus is an operator

acting on the nuclear Hilbert space which is given by

µ =
gNµN

h̄
I, (21.6)



– 3 –

where µN = eh̄/2mpc is the nuclear magneton and gN the nuclear g-factor. On the other

hand, in classical electromagnetic theory, a magnetic moment µ at the origin gives rise to

a dipole magnetic field described by the vector potential,

A(r) =
µ×r

r3
= −µ×∇

(1

r

)

. (21.7)

This vector potential is in the Coulomb gauge, so that ∇ ·A = 0. The magnetic field itself

is given by

B(r) = ∇×A = −µ∇2
(1

r

)

+ µ · ∇∇
(1

r

)

= 4πδ(r)µ +
3(µ · r)r− r2µ

r5
. (21.8)

The magnetic field is singular at the origin, as indicated by the δ-function; the second term

on the right in Eq. (21.7) is also singular at the origin, and contains within it another

δ-function contribution. Some care is required in the treatment of this singularity when

analyzing hyperfine effects.

We will treat the hyperfine interaction as a perturbation to a single electron system

with Hamiltonian,

H0 =
p2

2m
+ V (r) +HFS , (21.9)

where HFS represents the fine structure effects. In hydrogen or hydrogen-like atoms, we

take V (r) = −Ze2/r, and in alkali atoms, V (r) is the self-consistent central field effective

potential in which the valence electron moves. In the case of hydrogen-like atoms, we may

also wish to add a term to take care of the Lamb shift. Such details do not make much

difference in the following analysis; the main fact which we use below is that the unperturbed

energy eigenstates are |n`jmj〉, the unperturbed energy levels are En`j , and the complete

set of commuting observables is (H,L2, J2, Jz). (The Lamb shift causes the energy levels

to depend on ` in hydrogen-like atoms.)

We must also consider the effect of the nuclear spin degree of freedom on the unper-

turbed system. This degree of freedom makes no contribution to the unperturbed Hamil-

tonian H0, because with the hyperfine interaction switched off (and in the absence of any

external magnetic field) the nuclear spin Hamiltonian is just zero. But the nuclear degree

of freedom enlarges the Hilbert space. Previously we have worked with the electron Hilbert

space,

Eelec = Eorb
elec ⊗ Espin

elec ; (21.10)

now we must work with the total Hilbert space,

Etot = Eelec ⊗ Enucl = Eorb
elec ⊗ Espin

elec ⊗ Enucl. (21.11)
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A suitable set of basis kets for the space Etot is the tensor product basis,

|n`jmj〉 ⊗ |imi〉 = |n`jmjmi〉, (21.12)

in which we suppress the constant index i in the final form. We will call this basis the

uncoupled basis, because angular momenta J and I are as yet uncoupled. (Of course, L

and S have been coupled to make J.) The complete set of commuting observables in the

uncoupled basis are (H0, L
2, J2, Jz , Iz). We could add the constant operators S2 and I2 to

this list.

The atomic electron interacts with the magnetic dipole field both in its orbital and

spin degrees of freedom, giving an interaction hamiltonian which we denote by HMD:

H1 = HMD =
e

mc
A · p +

e

mc
S ·B, (21.13)

where p is the electron momentum and where S is the electron spin. The first term in HMD

is the orbital contribution, which comes from expanding (1/2m)(p + eA/c)2, just as in the

Zeeman effect. The second term is the spin contribution, in which we set ge = 2.

It is relatively straightforward to express the orbital part in terms of angular momentum

operators; we simply substitute Eq. (21.7) to obtain

Horb
MD =

e

mc

(µ×r) · p

r3
=

e

mc

µ · L

r3
=

(2gNµNµB

h̄2

)I · L

r3
. (21.14)

The spin part of HMD is harder to deal with because of the singularity at r = 0.

Therefore we will smooth out this singularity by replacing the point dipole at the origin by

a uniformly magnetized sphere of small radius and net dipole moment µ, and then allowing

the radius of the sphere to approach zero. When we do this, we will find that the shifts in

the atomic energy levels are finite and well behaved.

The problem of a uniformly magnetized sphere is a standard one in electromagnetic

theory. Suppose the sphere, centered at the origin, has radius R, volume V = (4π/3)R3,

and magnetization M = µ/V . Since M is the dipole moment per unit volume, and since

the vector potential for a single dipole is given by Eq. (21.7), the vector potential produced

at a field point r due to the magnetized sphere is

A(r) =

∫

vol

d3r′
M×(r − r′)

|r − r′|3
= −M×∇

∫

vol

d3r′
( 1

|r− r′|

)

, (21.15)

where the integrals are taken over the volume of the sphere. The integral in the final

expression is recognized as the electrostatic potential due to a uniformly charged sphere of
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unit charge density, and its negative gradient is the corresponding electric field. Thus, by

an elementary application of Gauss’ theorem, we have

−∇

∫

vol

d3r′
( 1

|r− r′|

)

=











V r

R3
, r < R,

V r

r3
, r > R,

(21.16)

so that

A(r) =











µ×r

R3
, r < R,

µ×r

r3
, r > R.

(21.17)

We see that the exterior solution (r > R) is the same as that of the point dipole [cf.

Eq. (21.7)], but the interior solution (r < R) is smooth and well behaved as r → 0. The

two solutions are continuous at r = R. Finally, taking the curl, we obtain

B(r) =















2µ

R3
, r < R,

3(µ · r)r− r2µ

r5
, r > R.

(21.18)

Comparing this with Eq. (21.8), we see that the exterior solution agrees with the field of

the point dipole, except for the delta function contribution in Eq. (21.8), which vanishes

anyway in the exterior region. Again, the interior solution is smooth and well behaved.

As for the interior solution for B, we note that the function f(r), defined by

f(r) =

{

1
R3 , r < R,

0, r > R,
(21.19)

is highly concentrated in a small region as R→ 0 and has constant integral 4π/3. Therefore

lim
R→0

f(r) =
4π

3
δ(r), (21.20)

and the interior solution Bint has the limit,

lim
R→0

Bint =
8π

3
δ(r)µ. (21.21)

Here we see a δ-function, just as in the first term of Eq. (21.8), but the coefficient is 8π/3

instead of 4π. The reason for the discrepancy is that the second term in Eq. (21.8) also

contains a δ-function component, with coefficient −4π/3. It is not altogether easy to see

this in Eq. (21.8), which is why we have introduced the uniformly magnetized sphere.
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We can now combine Eqs. (21.13), (21.18) and (21.19), and write out the spin contri-

bution to the interaction Hamiltonian. It is

Hspin
MD =

2gNµNµB

h̄2















2

R3
S · I →

8π

3
δ(r)S · I, r < R,

3(S · r)(I · r) − r2(S · I)

r5
, r > R,

(21.22)

where the limiting form as R→ 0 is also shown for the interior part. The term involving the

δ-function is called the “Fermi contact term,” because it is only nonzero when the electron

and nucleus are in contact with each other (r = 0).

In perturbation theory, we will be sandwiching eigenstates |n`jmj〉 of the unperturbed

Hamiltonian H0 around HMD. These eigenstates of H0 are also eigenstates of L2, and it

is convenient to treat the cases ` = 0 and ` 6= 0 separately. We will only have to deal

with diagonal matrix elements in `, since L2 commutes with the perturbing Hamiltonian.

Consider first the case ` = 0. In this case we take the operator H orb
MD of Eq. (21.14) to

vanish, since L is a vanishing operator on any subspace in which ` = 0. This is similar

to what we did with the spin-orbit term when discussing fine structure effects. This is a

somewhat hand-wavey argument, since the expectation value of 1/r3 is infinite in the case

` = 0, but if a more careful justification is desired, one can invoke the magnetized sphere

model for the orbital term (just as we have done for the spin term), and one will see that

expectation values of Horb
MD for ` = 0 do indeed vanish.

Therefore we have only a spin contribution in the case ` = 0, consisting of interior and

exterior parts as shown in Eq. (21.22). The exterior part vanishes in the case ` = 0, since

the integration against the spherically symmetric s-waves produces an average over angles,

and since

〈rirj〉 =
1

3
δij r

2, (21.23)

where the angle brackets represent an average over angles. Therefore only the interior part

of the spin term contributes in the case ` = 0.

In the case ` 6= 0, the interior part of the spin term does not contribute, since wave

functions ψ(r) go as r` near r = 0, and only an s-wave gives a nonvanishing contribution

when integrated against the δ-function in the interior expression. But both the exterior

spin part and the whole orbital term contribute when ` 6= 0.

We can summarize these results by writing down an effective HMD operator, to be
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used in the cases ` = 0 and ` 6= 0:

Heff
MD =

2gNµNµB

h̄2











8π

3
δ(r)S · I, ` = 0,

1

r3
G · I, ` 6= 0,

(21.24)

where

G = L− S +
3(S · r)r

r2
. (21.25)

Notice that G is a vector operator involving only the electron degrees of freedom (orbital

as well as spin).

We turn now to the perturbation analysis of HMD. The unperturbed Hamiltonian

H0 is certainly degenerate, because the unperturbed energies En`j are independent of the

magnetic quantum numbers mj and mi. Therefore a naive application of degenerate per-

turbation theory in the uncoupled basis will lead to a matrix indexed by these magnetic

quantum numbers, of dimensionality (2j + 1)(2i + 1). Furthermore, this will be a full ma-

trix, because Jz and Iz are not good quantum numbers of the perturbed problem. We can

see this by examining commutators, or by noting that HMD is not invariant under either

electron rotations or nuclear spin rotations separately. It is, however, invariant under si-

multaneous rotations of both electron and spin variables, so HMD does commute with both

F 2 and Fz, where F is the grand total angular momentum vector of the whole system,

F = J + I = L + S + I. (21.26)

This suggests that we use a coupled basis for the perturbation analysis, in which the coupled

basis states are eigenvectors of the complete set of commuting observables

(H0, L
2, J2, F 2, Fz). The vectors of the coupled basis are given in terms of the uncoupled

basis vectors by a Clebsch-Gordan expansion,

|n`jfmf 〉 =
∑

mj,mi

|n`jmjmi〉〈jimjmi|fmf 〉. (21.27)

The perturbing Hamiltonian HMD is diagonal in this coupled basis, and we can effectively

deal with nondegenerate perturbation theory (that is, we need examine only diagonal ele-

ments, and there is no matrix to diagonalize).

Therefore the energy shifts are given by

∆E = 〈n`jfmf |HMD|n`jfmf 〉. (21.28)

We consider the case ` 6= 0 first, in which case we must evaluate the matrix element,

〈n`jfmf |
1

r3
G · I|n`jfmf 〉. (21.29)
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We simplify this by invoking the projection theorem, which tell us that a vector operator

such as G, sandwiched between eigenstates of J 2 with the same j value on both sides, can

be replaced by an operator proportional to J:

G →
(G · J)J

j(j + 1)h̄2
. (21.30)

Therefore

〈n`jfmf |
1

r3
G · I|n`jfmf 〉 =

1

j(j + 1)h̄2
〈n`jfmf |

1

r3
(G · J)(J · I)|n`jfmf 〉. (21.31)

But by Eq. (21.26), we have

J · I =
1

2

(

F 2 − J2 − I2), (21.32)

so our matrix element becomes

〈n`jfmf |
1

r3
G · I|n`jfmf 〉

=
f(f + 1) − j(j + 1) − i(i+ 1)

2j(j + 1)
〈n`jfmf |

1

r3
(G · J)|n`jfmf 〉. (21.33)

As for the operator G · J, we use Eq. (21.25) and multiply it out, finding

G · J =
[

L− S +
3

r2
(S · r)r

]

· (L + S)

= L2 − S2 +
3(S · r)2

r2
= L2, (21.34)

where in the second equality we use r · L = 0, and in the third we use the fact that

S2 = (3/4)h̄2, and the fact that

(S · r)2 =
h̄2

4
(σ · r)2 =

h̄2

4
r2. (21.35)

Thus, the final matrix element in Eq. (21.33) becomes

〈n`jfmf |
1

r3
(G · J)|n`jfmf 〉 = `(`+ 1)h̄2

〈 1

r3

〉

=
h̄2

a3
0n

3

1

`+ 1
2

, (21.36)

where in the final expression we have evaluated the expectation value of 1/r3 for hydrogen

and used a0 for the Bohr radius. Of course, this expectation value must be done numerically

in the case of alkali atoms.

Gathering all the pieces together, we have in the case of hydrogen the energy shift due

to the nuclear magnetic dipole interaction,

∆EMD =
2gNµNµB

a3
0n

3

f(f + 1) − j(j + 1) − i(i+ 1)

j(j + 1)(2` + 1)
. (21.37)
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This is in the case ` 6= 0. However, it is easy to show that the same formula also applies

in the case ` = 0. Notice that the energy shift depends on the quantum numbers n, `,

j, and f , but not (naturally) on mf . The energy levels now have the form En`jf , and

are (2f + 1)-fold degenerate. This is the degeneracy expected generically on the basis of

rotational invariance alone. We note that the energy increases with f .

The energy shift (21.37) causes the fine structure levels in the Dirac picture to split,

giving rise to hyperfine multiplets. The details depend on whether we have ordinary hydro-

gen with the proton as nucleus, for which i = 1
2
, or deuterium with the deuteron as nucleus,

for which i = 1. For example, the Dirac 1s1/2 level in ordinary hydrogen splits into f = 0

and f = 1 levels, of which the ground state f = 0 is now nondegenerate. This level is the

true ground state of the hydrogen atom. Similarly, the Dirac 2p3/2 splits into f = 1 and

f = 2 levels. In deuterium, the Dirac 1s1/2 level splits into f = 1
2

and f = 3
2

levels, and

the Dirac 2p3/2 level splits into f = 1
2
, f = 3

2
and f = 5

2
levels.

However, in deuterium, there are also hyperfine effects from the electric quadrupole

moment of the nucleus, which we do not consider here. We simply comment that the

electric quadrupole field of the nucleus also gives rise to a coupling between the electron

and nuclear degrees of freedom, and therefore produces a further modification of the energy

levels discussed here. The electric quadrupole moment of the deuteron was first measured

by Rabi and coworkers in 1939; the fact that this moment is nonzero is an important clue

to the nature of nuclear forces, for it shows that they have a substantial spin dependence

and are not purely central. Thus, it turns out that the deuteron wave function is not purely

an s-wave, but has a small admixture of a d-wave.

Electric dipole transitions between the various hyperfine levels are of interest. The

matrix element governing such transitions is

〈n`jfmf |rq|n
′`′j′f ′m′

f 〉, (21.38)

which vanishes unless the following selection rules are satisfied:

mf = m′

f + q,

∆f = 0,±1 but f = 0 → f = 0 not allowed,

∆j = 0,±1,

∆` = ±1. (21.39)

All these rules except the exclusion of ∆` = 0 come from the Wigner-Eckart theorem,

and the exclusion of ∆` = 0 comes from parity conservation (as usual). The exclusion of
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f = 0 → f = 0 comes from the fact that 0⊗ 1 = 1. The only reason we do not also exclude

j = 0 → j = 0 is that j is half-integral, and cannot take on the value 0.

The hyperfine splitting of the 1s1/2 level in hydrogen is particularly interesting. The

separation between the f = 0 and f = 1 hyperfine levels is 1.42 GHz, or 21 cm in wavelength

units. Electric dipole transitions between these two levels are forbidden by parity, but

magnetic dipole transitions are allowed.

The 21 cm line is quite important in radio astronomy. Spiral galaxies typically possess

large clouds of atomic hydrogen, which radiate at the 21 cm wavelength. A population of

the excited state f = 1 is maintained by collisions; the temperatures prevalent in the clouds

are high enough that the populations of the ground state f = 0 and the first excited state

f = 1 are determined mostly by the degeneracies (1 for f = 0 and 3 for f = 1, although

there is some effect due to the Boltzmann factor). By measuring Doppler shifts, the state

of motion of the clouds can be measured. In this way, it was first proven that the Milky

Way is a spiral galaxy. The 21 cm line is also important in absorption spectra, which can

be used to determine the temperature of the clouds of atomic hydrogen.

Molecular hydrogen has a completely different hyperfine structure from atomic hy-

drogen, arising from the spin-spin interaction of the two protons in the molecule. The

transitions between the hyperfine levels of molecular hydrogen are in the megahertz range

of frequencies, and are not very useful in astrophysics.


