
Physics 209

Fall 2002

Homework 9

Due Saturday, November 1 at 5:00pm.

Note: Due to the exam in 221A, this homework is due on Saturday, November 1 instead of

Friday, October 31. However, the building is only open during limited hours on Saturday. If

you do not have a key, you will have to make arrangements to have your homework delivered

on time, or else turn it in on Friday.

1. In class we derived the 3 + 1 version of the relativistic Lagrangian for a particle in a

given electric and magnetic field,

L(x, ẋ) = −mc2
√

1 − |ẋ|2/c2 − eΦ +
e

c
ẋ · A. (1)

(a) Show that the Euler-Lagrange equations give the correct equations of motion.

(b) Show that this Lagrangian is regular (you can solve for ẋ in terms of p), and find the

Hamiltonian H(x,p)

(c) Show that Hamilton’s equations give the correct equations of motion.

2. Noether’s theorem for Lagrangians L(q, q̇) was described in class as follows. We let

q → Q(q, ε) be a mapping of configuration space onto itself. We say that this mapping is a

symmetry of the Lagrangian if

L
(

Q(q, ε),
dQ(q, ε)

dt

)

= L(q, q̇) +
dΛ(q, ε)

dt
(2)

for some function Λ, where q, Q etc are abbreviations for multicomponent coordinate vec-

tors, qi, Qi, etc. Also, in Eq. (2) dQ/dt and dΛ/dt are abbreviations for

dQi(q, ε)

dt
=

∑

j

∂Qi

∂qj

q̇j (3)

and
dΛ(q, ε)

dt
=

∑

i

∂Λ

∂qi

q̇i, (4)
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so that the Lagrangian before and after the transformation is a function of q and q̇. Equa-

tion (2) means that the equations of motion are the same before and after the symmetry

transformation.

As explained in class, we only use this symmetry property for infinitesimal ε, which

means we expand out to first order in ε to obtain an identity involving the Lagrangian, or

else we differentiate Eq. (2) with respect to ε and set ε = 0, which is the same thing. This

gives the identity,
∑

i

( ∂L

∂qi

Fi +
∂L

∂q̇i

dFi

dt

)

=
dG

dt
, (5)

where

Fi(q) =
∂Qi(q, ε)

∂ε

∣

∣

∣

∣

ε=0

, (6)

and

G(q) =
∂Λ(q, ε)

∂ε

∣

∣

∣

∣

ε=0

. (7)

Equation (5) is just an identity satisfied by the Lagrangian, due to the symmetry. But

now we use the Euler-Lagrange equations,

d

dt

( ∂L

∂q̇i

)

=
∂L

∂qi

, (8)

to write Eq. (5) in the form,
d

dt

(

∑

i

Fipi − G
)

= 0. (9)

This gives us the conserved quantity corresponding to the symmetry.

(a) Consider the relativistic motion of a charged particle of charge e in a constant, uniform

magnetic field, B = B0ẑ. Use the covariant Lagrangian,

L
(

xµ,
dxµ

dσ

)

= mc

√

dxµ

dσ

dxµ

dσ
−

eB0

c
x

dy

dσ
, (10)

where as explained in class t is regarded as a 4th q and σ is an arbitrary parameter of the

orbits. Equation (10) effectively uses the vector potential, A = B0xŷ. Find the constants

of motion associated with translations in the x, y, z and t directions. Find the constant

of motion associated with rotations in the x-y plane. Express your constants of motion

in terms of the kinetic (not canonical) momentum, or equivalently in terms of the world

velocity. Show that the constants associated with x and y displacements are closely related

to the guiding center position.
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Notational suggestion: Since the covariant, kinetic 4-momentum pµ has components,

pµ =

(

E/c
−p

)

, (11)

use the notation p1, p2, p3 for pµ with µ = 1, 2, 3, and px, py, pz for the usual components

of p, so that px = −p1, etc.

(b) This is probably the hardest part of this homework, so you might want to do it last.

Consider the motion of a nonrelativistic charged particle of charge e in the field of a magnetic

monopole,

B(x) = g
x

r3
, (12)

where g is the strength of the monopole and r = |x|. Assume the monopole is infinitely

massive and located at the origin. The nonrelativistic Lagrangian for this system is

L =
m

2
|ẋ|2 +

e

c
ẋ · A(x), (13)

where B = ∇×A. It is possible to work out explicit formulas for A which produce the

magnetic field (12), but the formulas are ugly, so we will not attempt to do that. Instead,

we will just use the property B = ∇×A, with B given by Eq. (12).

Consider rotations about the axis n̂, so that for small angles of rotation θ, x is replaced

by x + θ(n̂×x). Show that such rotations are a symmetries of the Lagrangian (13), and

find the corresponding vector of conserved quantities (a vector since n̂ is arbitrary). Hint:

the conserved quantities will be gauge-invariant, that is, you should be able to find an

expression for them that does not involve A.

3. Fermat’s principle in optics says that light rays x(λ) are stationary paths of the fol-

lowing functional, the “optical path,”

P [x(λ)] = c

∫

dt =

∫

n(x) ds =

∫ λ1

λ0

n(x)

∣

∣

∣

∣

dx

dλ

∣

∣

∣

∣

dλ, (14)

where n(x) is the index of refraction, x = (x, y, z), and λ is an arbitrary parameter.

Suppose the medium is one in which n(x) only depends on z, so that the system

has translational symmetry in the x- and y-directions. For example, we might have a

discontinuous change from one medium to another, with the interface being at z = const.

Show that Snell’s law is a consequence of Noether’s theorem.
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4. In class we modelled the transverse vibrations of a string as a discrete set of N masses

m spaced at intervals of ∆x with Lagrangian,

L =
N

∑

i=1

m

2
ẏ2

i −
N+1
∑

i=1

k

2
(yi − yi−1)

2, (15)

where k is the spring constant for the spring connecting mass i and mass i − 1. All springs

have the same k. Then we took the limit in which N → ∞, m = ρ∆x, k = κ/∆x, where

ρ is the mass per unit length of the string and κ is the spring constant of the whole string

times the length of the string. This gave the field Lagrangian,

L =

∫

dxL, (16)

where the Lagrangian density is

L =
ρ

2

(∂y

∂t

)2

−
κ

2

(∂y

∂x

)2

. (17)

Construct the classical Hamiltonian H for the discretized version of the vibrating string.

Take the limit N → ∞ and show that H can be written as the x integral of a Hamiltonian

density H, and find an expression for H. The Hamiltonian density H is interpreted as the

energy density of the system.

Show that there exists a function S, depending on y(x, t) and/or its various derivatives,

such that
∂H

∂t
+

∂S

∂x
= 0. (18)

This is a one-dimensional continuity equation, and S is interpreted as the energy flux of the

system (like the Poynting vector in electromagnetism).


