
Physics 209

Fall 2002

Homework 8

Due Friday, October 18 at 5:00pm.

Reading Assignment: Read the notes on Thomas Precession, and proceed into Chapter

12 of Jackson to keep up with lectures. I have also posted some optional notes on the Lie

algebra of the Lorentz group, that several students were interested in. I did not lecture on

this in class and will not expect you to know it. Jackson has a section on this subject that

he uses in discussing Thomas precession, but since I took another approach that does not

use the Lie algebra, I will skip this topic.

1. This is a variation on Jackson’s problem 12.11. Charged leptons (the electron, muon

and tau) possess a magnetic moment with a g factor very close to 2. The small difference,

here measured by the quantity

a =
g

2
− 1, (1)

can be calculated to high precision theoretically. Recently new measurements of the muon

g factor have caused excitement because they seem to disagree with theory based on the

standard model, thereby revealing physics beyond the standard model. The vaues given by

both theory and experiment have error bars, in the case of theory because the theoretical

calculations must rely on extrapolations from other experimental data for the effects of the

strong interaction on the g factor. The error bars are currently not as small as one would

like.

Nonrelativistically, the orbital frequency of a charged particle with g = 2 in a uniform

magnetic field is the same as the spin precession frequency. You can easily verify this for

yourself. Thus, if g = 2 exactly, the spin undergoes one cycle of precession when the particle

returns to some initial point on its circular orbit in the magnetic field. If g differs from 2

by a small amount, then the spin acquires some small net precession angle after a single

orbital period. Experiments take advantage of this fact to measure g − 2 to high precision.

Real experiments work with relativistic particles, however.

(a) In class we derived the BMT equation, Jackson (11.164),

dsµ

dτ
=

e

mc

[

g

2
F µ

ν sν −
1

c2

(g

2
− 1

)

(u · F · s)uµ

]

, (2)
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where e is the signed charge of the particle and (u·F ·s) = uα Fαβ sβ. This equation is based

on the assumption that the evolution of the spin is a combination of Fermi-Walker transport

with a precession induced by the magnetic field in the rest frame, plus the assumption that

the acceleration of the particle is produced by electromagnetic forces.

Assuming that sµ is purely spatial in a rest frame of the particle at some initial time

((s ·u) = 0), and assuming that the spin evolves according to the BMT equation, show that

sµ remains a purely spatial vector in a rest frame of the particle for all times. Next show

that if qµ, pµ are two vectors that are purely spatial in any rest frame of the particle and

that evolve according to the BMT equation, then (p · q) is constant.

(b) In the lab frame a muon is orbiting in a circular orbit in a uniform magnetic field B,

as in a storage ring. Let si be the components of the spin in the Thomas conventional rest

frame with basis vectors {eα}, as in the notes on Thomas precession. Note that s0 = 0.

Find an equation for dsi/dτ in terms of the magnetic field B in the lab frame. You can

write the vector with components si as s, but remember this vector is measured in the

Thomas conventional rest frame.

(c) Find the net angle of precession as seen in the Thomas conventional rest frame after

one orbital period. Express your answer in terms of a.

2. In class we discussed how the inertia of an object depends on its energy content. This

is part of understanding the relation E = mc2 between energy and mass. As was explained

in class, we may define the inertial mass of an object by using F = ma, applied when

the velocity is very small (or zero). The object itself may contain subsystems with large

velocities, however, such as the photons bouncing in the box of mirrors we discussed in

class. For another example, the electrons in orbit around the atoms of some object have

kinetic energy, and this kinetic energy contributes to the mass. So does the potential energy

of the electrons. Since the sum of the kinetic and potential energies is negative for a bound

electron, an atom has less inertial mass than the free electrons and nuclei out of which it is

composed.

Suppose our “atom” is a charged particle in a circular orbit in a uniform magnetic field,

that is, with zero velocity along the direction of the magnetic field. Apply a weak electric

field to this system in the direction parallel to the magnetic field, and compute the small

velocity in this direction produced after a short time. Show that this gives an inertial mass

that includes the kinetic energy of the circular motion of the charged particle.
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3. A particle of charge e finds itself in the vacuum light wave,

E = E0x̂ cos φ,

B = E0ŷ cos φ, (3)

where φ = ωt − kz. The initial conditions are x = 0 and v = 0 at t = 0. Find the motion

of the particle. Show that averaged over a long time, the particle moves in the z direction

with a velocity,

c
ω2

0

ω2

0
+ 4ω2

, (4)

where ω0 = eE0/mc. Hint: First show that the phase of the wave, as seen by the particle,

is proportional to the particle’s proper time. This is a problem for which the nonrelativistic

equations are harder to solve than the relativisitic ones.

4. Hamilton’s principle says only that the action is stationary along physically realizable

motions, not that it is minimum or extremum (in spite of what many books say). Never-

theless, it is interesting to investigate when the action actually is minimum. This is also

a good way to make sure you really understand Hamilton’s principle. Consider the one

dimensional harmonic oscillator with Lagrangian

L =
m

2
ẋ2 −

mω2

2
x2, (5)

and consider a physically realizable orbit which begins at (x0, t = 0) and which ends at

(x1, t = T ). Show that if T < π/ω, then the action actually is a minimum. Remember

that the variations δx(t) = ε(t) you consider must vanish at the endpoints, ε(0) = ε(T ) = 0.

Show that for an arbitrary time T , the action is generally at a saddle point in function space

when evaluated on a physically realizable orbit, and that there are an infinity of directions

in which it is increasing, and a finite number in which it is decreasing. Show that the

number in which it is decreasing is largest integer less than ωT/π.

Hint: Evaluate the action exactly, don’t just expand it out to first order in ε. Since

ε(0) = ε(T ) = 0, use the complete set of orthothogonal functions sin(nπt/T ) as a basis, to

expand ε(t) on the interval (0, T ).


