
Physics 209

Fall 2002

Homework 11

Due Friday, November 22 at 5:00pm.

This homework is due in two weeks because of the midterm. However, there may be another

assignment added before the due date, on account of the material covered in lecture on

Wednesday, Nov. 13. (There is only one lecture next week, since Monday is a holiday.)

About the midterm: The midterm will be in class, closed book, on Friday, November

15. It will cover material through Thomas precession. There will be a special discussion

or review section on Wednesday, Nov. 13 at 5:00pm in 430 Birge. The regular discussion

section on Thursday, Nov. 14 is cancelled.

1. In class we derived the covariant expression for the fields produced by an accelerated

particle,

F µν = e
{∆xµbν − bµ∆xν

(∆x · u)2
−

∆xµuν − uµ∆xν

(∆x · u)3
[

(∆x · b) − 1
]

}

. (1)

The notation is the following. We have chosen unit such that c = 1. In this problem,

make life easier for yourself and set c = 1, until you get to final formulas where you can

restore the c’s by dimensional analysis. Minkowski dot products are indicated by a dot and

parentheses, as in (a · b). The particle of charge e follows the world line yµ(τ). The symbol

yµ is used for the particle, while xµ is used for a field point. For fixed xµ, the retarded

point yµ(τ0) on the world line of the particle is defined by the condition,

(

x − y(τ0)
)

· (x − y(τ0)
)

= 0, (2)

where y0(τ0) < x0. That is, τ0 is the unique root of Eq. (2) satisfying y0(τ0) < x0.

Geometrically, this says that yµ(τ0) is the intersection of the world line with the backward

light cone from xµ. Equation (2) makes τ0 a function of xµ. The vector ∆xµ is defined by

∆xµ = xµ − yµ(τ0), (3)

so that

(∆x · ∆x) = 0. (4)

The vectors uµ and bµ are the world velocity and acceleration of the particle at the retarded

point, uµ = dyµ/dτ , bµ = duµ/dτ , evaluated at τ = τ0. Finally, we used the relation,

∂τ0

∂xµ
=

∆xµ

(∆x · u)
(5)
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in deriving Eq. (1). Equation (5) was obtained by differentiating Eq. (2) with respect to

xµ.

To convert Eq. (1) into 3 + 1 notation, use the following notation. First, write xµ =

(t,x), yµ = (t′,y), and

∆xµ =

(

R
R

)

, (6)

where R = x − y(τ0), and R = |R| = t − t′. Then write n̂ = R/R. Then the electric field

can be written,

E(x, t) = e
{ n̂ − β

γ2R2(1 − n̂ · β)3
+

n̂×[(n̂− β)×β̇]

cR(1 − n̂ · β)3

}

, (7)

where factors of c have been restored and where β = ẏ/c, evaluated at the retarded time.

The first major term in Eq. (7) is the “velocity field”, the second, the “acceleration field.”

As for the magnetic field, it is given by B = n̂×E.

(a) Show that the velocity field comes from the last term in Eq. (1) (the −1), and that

the acceleration field comes from all the other terms. Thus, the decomposition into velocity

and acceleration fields is covariant.

(b) Compute the electromagnetic stress-energy tensor T µν for the acceleration fields only.

(c) In the following we will need some integrals of 4-vectors over 3-dimensional surfaces

in space-time. Such an integral is done in a manner that is very similar to the integration

of a 3-vector over a 2-dimensional surface in ordinary space. For example, in integrating a

3-vector J over a 2-dimensional surface, we write

∫

S

da n̂ · J, (8)

where da is an area element and n̂ is the unit vector normal to the surface. Suppose

coordinates (u, v) are imposed on the surface. Then the vectors (∂x/∂u)∆u and (∂x/∂v)∆v

are two small vectors (for small increments ∆u and ∆v) that span the plane tangent to the

surface, and these define an area element

da =
(∂x

∂u
×

∂x

∂v

)

∆u∆v = da n̂, (9)

which is normal to the surface. Thus the integral (8) can be written,

∫

du dv
(∂x

∂u
×

∂x

∂v

)

· J =

∫

du dv εijk

∂xi

∂u

∂xj

∂v
Jk. (10)
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Of course, we have two choices of direction of the normal vector n̂ in Eq. (8). If the

direction of n̂ in Eq. (9) is not what we want, we can swap u and v (the direction of the

normal depends on the ordering of the coordinates on the surface).

Similarly, for a 3-dimensional surface in 4-dimensional space, we can impose coordinates

(u, v, w) on the surface, and define the integral of Kµ over the surface by
∫

du dv dw εµναβ

∂xµ

∂u

∂xν

∂v

∂xα

∂w
Kβ . (11)

See Eq. (4.43) for the definition of the four-dimensional Levi-Civita symbol (in the notes

on tensor analysis). When doing surface integrals in Minkowski space, it is better not to

try to introduce a unit vector normal to the surface, as we did in Eq. (8), since vectors in

Minkowski space may have positive, negative or zero squares (thus, a unit light-like vector

makes no sense). But we can introduce a vector nµ normal to the surface,

nβ = εµναβ

∂xµ

∂u

∂xν

∂v

∂xα

∂w
, (12)

whereupon the surface integral can be written
∫

du dv dw nβKβ , (13)

we just do not attempt to normalize nµ.

Using Eq. (11), show that if you integrate a four-vector Kµ over the 3-dimensional

surface t = 0 in some Lorentz frame, the result is
∫

d3xK0. (14)

This is just for practice in doing such integrals. Let the coordinates (u, v, w) on the surface

be the usual (x, y, z).

AA′

Fig. 1. Light cone produced by light emitted from one point on world line of particle.
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(d) Let kµ be a fixed vector. The idea is that by letting kµ be a unit vector in the time-

direction or spatial directions we can look at the energy or momentum radiated by the

particle. Define

Kµ = T µνkν , (15)

and note that ∂µKµ = 0.

Consider the light cone produced by the light emitted by the particle at some point

on its world line, as in Fig. 1. Show that Kµ integrated over any region of the light cone

vanishes, as long as the region does not contain the vertex. We exclude the vertex because

it is a singular point of the cone, and the fields diverge there. To do this, show that K µ

is tangent to the light cone, so that Kµ dotted into any vector normal to the light cone

is zero. Notice that the light cone is a 3-dimensional surface (it appears 2-dimensional in

Fig. 1 because that is a schematic, 2 + 1 diagram).

AA′

B
B′

τ0

τ1

yµ(τ)

Fig. 2. Two light cones, produced by light emitted at two close proper times, τ0 and τ1.

(e) Now consider two closely spaced events on the world line of the particle, with proper

times τ0 and τ1. Let ∆τ = τ1 − τ0. See Fig. 2. This figure is drawn in some Lorentz frame.

Let ∆t′ be the coordinate time between the two events on the world line separated by ∆τ ,

so that ∆t′ = γ∆τ . Consider also the light cones emanating from these two events, as

shown in the figure.

The points A, A′ are two simultaneous events (in the selected Lorentz frame) on the

first (τ0) light cone. These two points in this (1+1) figure represent the circle AA′ in Fig. 1

(a 2+1 figure), and a sphere of radius R centered on y(τ0) in a 3+1 figure (which we can’t

draw). The events B, B ′ have the same spatial location (in the given Lorentz frame) as
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the events A, A′, but occur at later times, namely, the time at which the light emitted at

τ1 reaches those spatial locations. Notice that B and B ′ are not simultaneous; the elapsed

time tB′ − tA′ in the figure is larger than the elapsed time tB − tA.

Find a simple expression in 3 + 1 notation for ∆t = tB − tA as a function of ∆t′ and

n̂ = R/R (see Eq. (6)). Note that n̂ tells where on the sphere AA′ you are.

Give a physical interpretation of the integral of Kµ over the surface ABA′B′. You don’t

have to evaluate this integral, just interpret it physically. Notice that the time integration

is over an infinitesimal interval, so it is trivial (but the interval depends on where on the

sphere you are).

The value of this integral is a Lorentz invariant, if we regard the surface ABA′B′ in a

geometrical sense. That is, if we choose to look at Fig. 2 in another Lorentz frame, we just

evaluate components of vectors etc in the new coordinate system, but we don’t change the

surface (the set of events) over which we integrate. Then the integral is a Lorentz invariant,

because the integrand is a Lorentz invariant.

AA′

B
B′

τ0

τ1

yµ(τ)

C
D

C ′

D′

Fig. 3. A 3-dimensional hypersurface cuts through the light cones, intersecting at points CD and C ′D′.

(f) Now consider a 3-dimensional hypersurface cutting through the two light cones, as

illustrated in Fig. 3. The surface intersects the light cones at points CD and C ′D′. The

intersection CDC ′D′ represents a 3-dimensional surface. Explain why the integral of Kµ

over this surface is equal to the integral of Kµ over the surface ABA′B′.

(g) The new 3-dimensional hypersurface in part (f) is actually a hypersurface t = const

in a Lorentz frame in which the particle is at rest at τ0. Figure 4 is Fig. 3 redrawn in

this Lorentz frame, with points CDC ′D′ marked. Evaluate the integral of Kµ over surface
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τ0

τ1

yµ(τ)

C
D

C ′

D′

Fig. 4. Figure 3 redrawn in a Lorentz frame in which particle is at rest at τ0.

CDC ′D′. The answer will involve the vector kµ, which we haven’t specified yet; express

your answer in terms of contractions over kµ, and other Minkowski scalar products, as

necessary, to make it obvious that the answer is a Lorentz invariant.

(h) Now use the result obtained in part (g) to find an expression for dE/dt′, the energy

radiated by the accelerated particle per unit retarded time, in an arbitrary Lorentz frame

(the original frame in which Figs. 1–3 were drawn).

2. Jackson, problem 14.8.

3. Jackson, problem 14.9, but omit part (d) since we haven’t talked about motion in

inhomogeneous magnetic fields yet.

4. Jackson, problem 14.21.


