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Notes 14

Coupling of Angular Momenta

In these notes we will discuss the problem of the coupling or addition of angular mo-

menta. It is assumed that you have all had experience with this in undergraduate school, and

that, for example, you know how to compute simple Clebsch-Gordan coefficients. There-

fore these notes will concentrate on the fundamental principles, and on subjects which you

probably have not seen before.

We begin with the tensor product, which is a mathematical operation used in quantum

mechanics to combine together the ket spaces corresponding to different degrees of freedom

to obtain a ket space for a composite system. For example, one can combine the ket spaces

for two individual particles, to obtain the ket space for a two-particle system; or one can

combine the orbital and spin degrees of freedom for a single particle.

To be specific, suppose we have two spinless distinguishable particles, labeled 1 and 2,

and let the ket spaces for these particles be denoted E1 and E2. These ket spaces can be

identified with spaces of wave functions on 3-dimensional space, so we write

E1 = {φ(r), particle 1}

E2 = {χ(r), particle 2}. (14.1)

We regard these two ket spaces as two distinct spaces, because they are associated with two

different particles. The use of two symbols (φ and χ) for the wave functions is just a way

of reminding ourselves which particle is being referred to. Now the wave function space for

the combined, two-particle system is another space, the space E of wave functions defined

on the combined, 6-dimensional configuration space (r1, r2):

E = {ψ(r1, r2)}. (14.2)

A special case of a two-particle wave function is a product of single particle wave

functions,

ψ(r1, r2) = φ(r1)χ(r2), (14.3)

but not every two-particle wave function can be written in this form. On the other hand,

every two-particle wave function can be written as a linear combination of products of single

particle wave functions. To see this, we simply introduce a basis {φn(r)} of wave functions
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in E1, and another basis {χm(r)} of wave functions in E2. Then an arbitrary two-particle

wave function can be written,

ψ(r1, r2) =
∑

n,m

cnm φn(r1)χm(r2), (14.4)

where the cnm are expansion coefficients. In other words, the products of single particle

basis wave functions forms a basis in the wave function space for two particles.

In the construction we have just presented, we say that the space E is the tensor product

of the spaces E1 and E2, and we write

E = E1 ⊗ E2. (14.5)

Loosely speaking, one can say that the tensor product space is the space spanned by the

products of wave functions from the two constituent spaces. In addition to forming the

tensor product of ket spaces, one can also form the tensor product of kets. An example is

given in wave function language by Eq. (14.3), which in ket language would be written

|ψ〉 = |φ〉 ⊗ |χ〉. (14.6)

Thus, the tensor product of kets corresponds to the ordinary product of wave functions.

Often in casual physics notation, the tensor product sign ⊗ is omitted from a tensor product

such as (14.6), and one simply writes |φ〉|χ〉.

More generally, suppose E1 is a ket space spanned by the basis {|αn〉}, and E2 is a ket

space spanned by the basis {|βm〉}. Then E1 ⊗ E2 is a new ket space spanned by the basis

kets {|αn〉⊗ |βm〉}. Obviously, if E1 and E2 are finite-dimensional, then so is E , and we have

dim E = (dim E1)(dim E2). (14.7)

If either E1 or E2 is infinite-dimensional, then so is E .

An important example of the tensor product occurs when we combine the spatial or

orbital degrees of freedom of a single particle with the spin degrees of freedom. We can

define orbital and spin ket spaces by

Eorb = span{|r〉},

Espin = span{|m〉}, (14.8)

where m = −s, . . . ,+s. Notice that Eorb is infinite-dimensional, whereas Espin is finite-

dimensional. Then the total Hilbert space for the particle is

E = Eorb ⊗ Espin = span{|r〉 ⊗ |m〉}. (14.9)
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Let us write

|r,m〉 = |r〉 ⊗ |m〉 (14.10)

for the basis vectors of the tensor product space, so that an arbitrary ket |ψ〉 belonging to

E can be written as a linear combination of these basis vectors. Then we have

|ψ〉 =
∑

m

∫

d3r |r,m〉〈r,m|ψ〉 =
∑

m

∫

d3r |r,m〉ψm(r), (14.11)

where

ψm(r) = 〈r,m|ψ〉. (14.12)

These operations illustrate how we can go back and forth between ket language and wave

function language for a particle with spin; the wave function ψm(r) is a multi-component

or spinor wave function, which one can imagine as a column vector. For example, in the

case of a spin- 1
2

particle, we can write

ψ±(r) =

(

ψ+(r)

ψ−(r)

)

. (14.13)

One can also form the tensor product of operators. Suppose A1 is an operator which

acts on E1, and A2 is an operator which acts on E2, and let E = E1 ⊗E2. Then we define an

operator A1 ⊗A2, whose action on a tensor product of vectors from E1 and E2 is given by

(A1 ⊗A2)(|α〉1 ⊗ |β〉2) = (A1|α〉1) ⊗ (A2|β〉2). (14.14)

In this equation, the subscripts 1, 2 on the kets indicate which space (E1 or E2) the kets

belong to. But since an arbitrary vector in E can be represented as a linear combination

of tensor products of vectors from E1 and E2, we can use linear superposition to extend

Eq. (14.14) to define the action of A1 ⊗ A2 on an arbitrary vector in E . Again, in casual

physics notation, the tensor product sign is often omitted in a product of operators such as

A1 ⊗A2, and one would simply write A1A2.

A special case of the above is when one or the other of the operators A1 or A2 is the

identity. For example, if A2 = 1, we have

(A1 ⊗ 1)(|α〉1 ⊗ |β〉2) = (A1|α〉1) ⊗ |β〉2. (14.15)

In such cases it would be normal in casual physics notation to write simply A1 instead of

A1 ⊗ 1, thereby confusing an operator which acts on E1 with an operator which acts on

E . Similar considerations apply to operators of the form 1 ⊗ A2, where A1 = 1. We note
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that operators of the type A1, A2, when regarded as acting on the tensor product space E ,

always commute with one another,

[A1 ⊗ 1, 1 ⊗A2] = [A1, A2] = 0, (14.16)

as follows from Eq. (14.14). As one says, A1 and A2 commute because they act on different

spaces.

Now we proceed to the problem of the addition of angular momenta. Suppose we have

two ket spaces E1 and E2 upon which two angular momentum operators J1 and J2 act, each

of which satisfies the angular momentum commutation relations (11.1). The case of the

orbital and spin ket spaces discussed above is a good example; if E1 = Eorb and E2 = Espin,

then the angular momentum J1 is the orbital angular momentum L and J2 is the spin

angular momentum S. Then in accordance with the general theory laid out in Notes 11, we

know that each space E1 and E2 breaks up into the direct sum of a sequence of irreducible

subspaces, each with a definite j value. For example, an irreducible subspace of Eorb is

spanned by wave functions of the form un(r)Y`m(θ, φ) for a definite radial wave function

un(r), a definite value of `, and for −` ≤ m ≤ +`. This subspace has dimensionality 2`+1.

As for the space Espin, it consists of a single irreducible subspace of dimensionality 2s+ 1,

characterized by the value s of the spin.

Because both spaces E1 and E2 can be decomposed into irreducible subspaces, we can

study these irreducible subspaces one at a time when taking the tensor product of E1 and

E2. In other words, without loss of generality, we can assume that both E1 and E2 consist

of a single irreducible subspace. If this is not so at the start, we can redefine E1 and E2

to be irreducible subspaces of their former selves, if necessary. For example, in the case of

the orbital ket space, we may wish to let E1 represent the 5-dimensional space spanned by

the Y`m’s (with definite radial wave function) for ` = 2. With these assumptions, spaces

E1 and E2 are characterized by definite angular momentum values j1 and j2, and their

dimensionalities are 2j1 + 1 and 2j2 + 1, respectively.

We now consider the tensor product space E = E1 ⊗ E2, which has dimensionality

(2j1 + 1)(2j2 + 1). We define a “total” angular momentum operator acting on E by

J = J1 ⊗ 1 + 1 ⊗ J2 = J1 + J2, (14.17)

where the final expression is in casual physics notation. We note that J1 and J2 commute,

[J1,J2] = 0, (14.18)

since they act on different spaces. (This commutator means that every component of J1

commutes with every component of J2.) From this it easily follows that J also satisfies the
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angular momentum commutation relations,

[Ji, Jj ] = ih̄ εijk Jk. (14.19)

Therefore we have a new space E upon which a vector J of angular momentum operators

acts; in accordance with the theory of Notes 11, this space breaks up into the direct sum of

a sequence of irreducible subspaces, each characterized by some j value. Furthermore, we

know that there exists a standard basis |αjm〉 on E . The basic problem of the addition of

angular momenta is to find which values of j occur in E and with what multiplicity, and to

find some convenient way of constructing the standard basis |αjm〉.

Since the spaces E1 and E2 are acted upon by angular momentum operators J1 and J2,

these spaces possess standard bases, say, {|j1m1〉} and {|j2m2〉}, where j1 and j2 are fixed

numbers characterizing the spaces E1 and E2 and where there is no need for an α index since

by assumption E1 and E2 were irreducible. [For example, the kets |j1m1〉 are simultaneous

eigenkets of J2
1 and J1z with eigenvalues j1(j1 + 1)h̄2 and m1h̄, respectively.] Therefore

we can form a basis in E by taking the tensor products of basis vectors in E1 and E2. We

introduce a shorthand notation for these tensor product basis kets in E , writing

|j1j2m1m2〉 = |j1m1〉 ⊗ |j2m2〉, (14.20)

where of course m1 = −j1, . . . , j1 andm2 = −j2, . . . , j2. We will call the basis {|j1j2m1m2〉}

in E the tensor product basis or uncoupled basis. The tensor product basis is not the same

as the standard basis in E .

We will denote the vectors of the standard basis in E by |αjm〉, as in the general theory.

As it turns out, however, the index α is unnecessary, and we will eventually be able to write

simply |jm〉. We will also refer to this basis as the coupled basis. The vectors of the standard

or coupled basis are simultaneous eigenkets of J 2 and Jz. To find these kets, we begin by

looking for eigenkets of Jz. This is easy, because the vectors of the tensor product basis are

all eigenkets of Jz = J1z + J2z , with eigenvalues (m1 +m2)h̄:

Jz|j1j2m1m2〉 = (J1z + J2z)|j1m1〉|j2m2〉 = (m1 +m2)h̄|j1j2m1m2〉

= mh̄|j1j2m1m2〉, (14.21)

where we set

m = m1 +m2, (14.22)

for the quantum number of Jz . The spectrum of Jz ranges from the maximum value of

m1 +m2, which is j1 + j2, down to the minimum, which is −(j1 + j2).



– 6 –

− 3
2

− 5
2

− 7
2

7
2

5
2

3
2

1
2− 1

2

m2

m1

Fig. 14.1. Each dot in the rectangular array stands for one vector of the uncoupled or tensor product basis,
|j1j2m1m2〉 = |j1m1〉|j2m2〉. The dashed lines are contours of m = m1 +m2.

These eigenvalues of Jz are in general degenerate. To follow the subsequent argument,

it helps to have an example. Let us take the case j1 = 5
2 and j2 = 1, so that 2j1 + 1 =

dim E1 = 6 and 2j2 +1 = dim E2 = 3. Thus, the dimensionality of E = E1 ⊗E2 is 6×3 = 18.

It is convenient to make a plot in the m1-m2 plane of the basis vectors of the tensor product

basis, by placing a dot at each allowed m1 andm2 value. We then obtain a rectangular array

of dots, as illustrated in Fig. 1. As illustrated in the figure, lines of constant m = m1 +m2

are straight lines, dashed in the figure, sloping downwards. The number of dots each dashed

line passes through is the number of kets of the uncoupled basis with a given m value; we

see that the degeneracies of the different m values range from one to three, as summarized

in Table 14.1.

In particular, the stretched state [the one for which (m1,m2) = (j1, j2), in the upper

right hand corner in the figure] is a nondegenerate eigenstate of Jz with quantum number

m = 7
2
. But since [J2, Jz ] = 0, this state is also an eigenstate of J 2, in accordance with

Theorem 1.2. But what is the eigenvalue of J 2, i.e., what is the quantum number j?

Certainly we cannot have j < 7
2
, because then this would violate the rule m ≤ j. Nor can

we have j > 7
2 , because, for example, if the stretched state were the state |jm〉 = | 92

7
2 〉, then

we could apply the raising operator J+ and obtain the state | 92
9
2 〉. But there is no state

with m = 9
2
, as we see from the figure or table. Therefore the j quantum number of the

stretched state must be j = 7
2 ; this state is the state |jm〉 = | 72

7
2 〉 of the coupled basis. But

given this state, we can apply lowering operators J− to obtain all eight states | 72m〉, which
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are indicated in the third column of the table.

m g(m) j = 7
2 j = 5

2 j = 3
2

7
2 1 1
5
2 2 1 1
3
2 3 1 1 1
1
2

3 1 1 1

− 1
2 3 1 1 1

− 3
2

3 1 1 1

− 5
2 2 1 1

− 7
2

1 1

Total 18 8 6 4

Table 14.1. The first column contains m, the quantum number of Jz ; the second column contains g(m), the
degeneracy of m; columns 3, 4 and 5 contain a unit for each vector |jm〉 of the standard or coupled basis with
given j and m values.

Now let us consider the 2-dimensional eigenspace of Jz corresponding to quantum

number m = 5
2
. This space is spanned by the kets of the uncoupled basis corresponding

to (m1,m2) = ( 5
2 , 0) and ( 3

2 , 1). Furthermore, the ket | 72
5
2 〉 of the coupled basis also lies in

this space. Let us consider the ket, call it |x〉, which is orthogonal to | 72
5
2 〉 in this space.

Certainly |x〉 is an eigenket of Jz with eigenvalue 5
2
. And it is also an eigenket of J 2, as a

simple extension of the proof of Theorem 1.2 will show. But what is the j value? Certainly

we cannot have j < 5
2 , because this would violate the m ≤ j rule. Nor can we have j > 5

2 ,

because if we had j = 7
2
, for example, for the state |x〉, then we would have two linearly

independent states, both with m = 5
2 and j = 7

2 . We could then apply the raising operator

J+ to both of them, and obtain two linearly independent states with m = 7
2 , j = 7

2 . But

there is only one state with m = 7
2
, as we see from the figure or table. Therefore we must

have j = 5
2 for the state |x〉, which otherwise is the ket | 52

5
2 〉 of the coupled basis. Then,

by applying lowering operators to this, we obtain all six vectors | 5
2
m〉, which are indicated

in the fourth column of the table. Finally, we carry out the same procedure for the 3-

dimensional space corresponding to m = 3
2 , and we obtain four more vectors | 32m〉 of the

coupled basis.

In this way, all 18 dimensions of E are used up, as indicated by the totals at the bottom

of the table. We see that the tensor product space E consists of the direct sum of three

irreducible subspaces, corresponding to j = 3
2 , 5

2 , and 7
2 , and that each of these j values
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occurs with multiplicity one. These facts are summarized by the notation,

5
2 ⊗ 1 = 3

2 ⊕ 5
2 ⊕ 7

2 , (14.23)

which corresponds to the dimensionality count,

18 = 6 × 3 = 4 + 6 + 8. (14.24)

By using diagrams like these, it is easy to work out the general case in which we combine

arbitrary angular momenta j1 and j2. The result is

j1 ⊗ j2 = |j1 − j2| ⊕ |j1 − j2| + 1 ⊕ . . .⊕ j1 + j2, (14.25)

that is, the j values in j1 ⊗ j2 range from a minimum of |j1 − j2| to a maximum of j1 + j2

in integer steps, and each j value in this range occurs once. Since no j value occurs more

than once, there is no need for the index α, and the vectors of the coupled basis can be

denoted simply |jm〉. Also, since the dimensionalities of the subspaces must add up to the

dimensionality of the tensor product space, we have the identity

j1+j2
∑

j=|j1−j2|

2j + 1 = (2j1 + 1)(2j2 + 1). (14.26)

This identity can be proved by elementary algebra, as a check on the count of dimensions.

At this point we have two bases in E = E1 ⊗ E2, the uncoupled basis |j1j2m1m2〉 with

−j1 ≤ m1 ≤ j1 and j2 ≤ m2 ≤ j2 and the coupled basis |jm〉 with |j1 − j2| ≤ j ≤ j1 + j2

and −j ≤ m ≤ j. These two bases must be connected by a unitary matrix, the components

of which are just the scalar products of the vectors from one basis with the vectors from

the other. That is, we have

|jm〉 =

j1
∑

m1=−j1

j2
∑

m2=−j2

|j1j2m1m2〉〈j1j2m1m2|jm〉, (14.27a)

|j1j2m1m2〉 =

j1+j2
∑

j=|j1−j2|

j
∑

m=−j

|jm〉〈jm|j1j2m1m2〉, (14.27b)

which can be regarded as the insertion of two resolutions of the identity in two different

ways. The expansion coefficients 〈j1j2m1m2|jm〉 or 〈jm|j1j2m1m2〉 are called the Clebsch-

Gordan coefficients, or, more properly, the vector coupling coefficients.

The Clebsch-Gordan coefficients can be calculated in a straightforward way by using

lowering operators and by constructing states (such as |x〉 in the discussion above) which
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are orthogonal to all known states in a subspace of given m. In this process, it is necessary

to make certain phase conventions; the standard is to follow the phase conventions discussed

in Notes 11, in which the matrix elements of J± in the standard basis are real and positive,

and to require in addition

〈jj|j1j2j1, j − j1〉 > 0, (14.28)

for each allowed j value. Under these phase conventions, the Clebsch-Gordan coefficients

are real, i.e.,

〈jm|j1j2m1m2〉 = 〈j1j2m1m2|jm〉, (14.29)

so that the unitary matrix connecting the coupled and uncoupled bases is in fact a real,

orthogonal matrix.

The Clebsch-Gordan coefficients have several properties which follow in a simple way

from their definition. The first follows from the fact that the Clebsch-Gordan coefficients

are the components of a unitary matrix, so that
∑

m1m2

〈jm|j1j2m1m2〉〈j1j2m1m2|j
′m′〉 = δjj′ δmm′ , (14.30a)

∑

jm

〈j1j2m1m2|jm〉〈jm|j1j2m
′
1m

′
2〉 = δm1m′

1
δm2m′

2
. (14.30b)

Again, these are nothing but orthonormality relations for the two bases, with resolutions of

the identity inserted.

Another property is the selection rule,

〈jm|j1j2m1m2〉 = 0 unless m = m1 +m2, (14.31)

which follows immediately from Eq. (14.21).

The Clebsch-Gordan coefficients also satisfy various recursion relations. We can obtain

one of these by applying J− = J1− + J2− to Eq. (14.27a). This gives

1

h̄
J−|jm〉 =

√

(j +m)(j −m+ 1) |j,m− 1〉

=
∑

m1m2

(

√

(j1 +m1)(j1 −m1 + 1) |j1j2,m1 − 1,m2〉

+
√

(j2 +m2)(j2 −m2 + 1) |j1j2m1,m2 − 1〉
)

〈j1j2m1m2|jm〉

=
∑

m1m2

(

√

(j1 +m1 + 1)(j1 −m1) 〈j1j2,m1 + 1,m2|jm〉

+
√

(j2 +m2 + 1)(j2 −m2) 〈j1j2m1,m2 + 1|jm〉
)

× |j1j2m1m2〉, (14.32)
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to which we apply the bra 〈j1j2m
′
1m

′
2| from the left and rearrange indices to obtain,

〈j1j2m1m2|jm〉 =
√

(j1 +m1 + 1)(j1 −m1) 〈j1j2,m1 + 1,m2|jm〉

+
√

(j2 +m2 + 1)(j2 −m2) 〈j1j2m1,m2 + 1|jm〉. (14.33)

Similar recursion relations follow by using J+, or by working with Eq. (14.27b). These

recursion relations are of use in calculating the Clebsch-Gordan coefficients.

Other properties of the Clebsch-Gordan coefficients include the following identities:

〈j1j2m1m2|jm〉 = (−1)j1+j2−j〈j2j1m2m1|jm〉, (14.34a)

= (−1)j1−j+m2

√

2j + 1

2j1 + 1
〈jj2m,−m2|j1m1〉, (14.34b)

= (−1)j2−j−m1

√

2j + 1

2j2 + 1
〈j1j,−m1,m|j2m2〉, (14.34c)

= (−1)j1+j2−j〈j1j2,−m1,−m2|j,−m〉. (14.34d)

We will not prove these identities here. If you ever have to use such identities in a serious

way, you should look into the Wigner 3j-symbols, which provide a more symmetrical way

of dealing with Clebsch-Gordan coefficients.

It is convenient to regard the Clebsch-Gordan coefficient 〈jm|j1j2m1m2〉 as being equal

to zero if any of the parameters lie outside the range for which they are meaningful, for

example, if j > j1 + j2 or m > j.

Let us now consider the effect of the rotation operator U(n̂, θ) on the tensor product

space E = E1 ⊗E2. This rotation operator is defined in the usual way, and can be expressed

in terms of the rotation operators U1(n̂, θ) and U2(n̂, θ) which act on the constituent spaces

E1 and E2:

U(n̂, θ) = e−iθn̂·J/h̄ = e−iθn̂·(J1+J2)/h̄

= e−iθn̂·J1/h̄e−iθn̂·J2/h̄ = U1(n̂, θ)U2(n̂, θ). (14.35)

Here the exponential of the sum factors into a product of exponentials because J1 and J2

commute.

Interesting results can be obtained from this. First let us apply a rotation operator U

to a vector of the uncoupled basis. We find

U |j1j2m1m2〉 = (U1|j1m1〉)(U2|j2m2〉) =
∑

m′

1
m′

2

|j1j2m
′
1m

′
2〉D

j1
m′

1
m1
D

j2
m′

2
m2

=
∑

jm

∑

m′

|jm′〉Dj
m′m〈jm|j1j2m1m2〉, (14.36)
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where we use Eqs. (11.56) and (14.27b), and where it is understood that all D matrices

have the same axis and angle (n̂, θ). Then we multiply this on the left by 〈j1j2m
′′
1m

′′
2 | and

rearrange indices, to obtain,

D
j1
m1m′

1

D
j2
m2m′

2

=
∑

jmm′

〈j1j2m1m2|jm〉Dj
mm′〈jm

′|j1j2m
′
1m

′
2〉. (14.37)

In a similar manner we can obtain the identity,

D
j
mm′ =

∑

m1m2

m′

1
m′

2

〈jm|j1j2m1m2〉D
j1
m1m′

1

D
j2
m2m′

2

〈j1j2m
′
1m

′
2|jm

′〉. (14.38)

These identities are useful for a variety of purposes; for example, Eq. (14.37) can be used

whenever it is necessary to express a product of D matrices as a linear combination of single

D matrices (a problem which arises often in atomic, molecular, and nuclear physics), and

Eq. (14.38) shows that D matrices for small values of j can be combined to find the D

matrices for larger values of j.

We present here one application of Eq. (14.37), in which we use Eq. (12.54) to obtain

an identity involving the Y`m’s. First we change notation in Eq. (14.37), setting j1 = `1,

j2 = `2 and j = ` (indicating integer angular momenta), and we set m′
1 = m′

2 = 0. Then

because of the selection rule (14.31), the m′ sum on the right hand side is replaced by the

single term m′ = 0. Then we take the complex conjugate of both sides and use Eq. (12.54),

to obtain

Y`1m1
(θ, φ)Y`2m2

(θ, φ) =
∑

`m

√

(2`1 + 1)(2`2 + 1)

4π(2`+ 1)

× Y`m(θ, φ) 〈`0|`1`200〉〈`1`2m1m2|`m〉. (14.39)

Of course, the product of two Y`m’s is a function on the unit sphere, which can be expanded

as a linear combination of other Y`m’s; this formula gives the expansion explicitly. We see

that the ` values which contribute are exactly those which occur in `1 ⊗ `2. Finally, we can

multiply this by Y ∗
`3m3

and integrate to obtain the useful formula,

∫

dΩY ∗
`3m3

Y`1m1
Y`2m2

=

√

(2`1 + 1)(2`2 + 1)

4π(2`3 + 1)
〈`30|`1`200〉〈`1`2m1m2|`3m3〉. (14.40)

We will call this the three-Y`m formula; it is very useful in atomic physics. This formula

can be regarded as a special case of the Wigner-Eckart theorem, which we consider later.


