Summary:

\[
\int \sum_s \int \frac{f(z)}{e^z} \, dz \, e^{\frac{z-2z_s}{\sqrt{\varepsilon}}} = \sum_s \int \frac{f(z)}{e^z} \left(\frac{1}{2} f''(z_s) (z-z_s)^2 + \frac{1}{24} f''''(z_s) (z-z_s)^4 + \cdots \right) \, dz
\]

\[
\frac{z-2z_s}{\sqrt{\varepsilon}} = y.
\]

Last time we were just putting the finishing touches on the SPA, by considering the issue of higher order approximations.

We argued that as \(\varepsilon \to 0 \), the region in the \(z \)-plane around the saddle points which contributes most to the integral must shrink as \(\sqrt{\varepsilon} \). Therefore the substitution is logical, and it gives

\[
\sum_s \frac{f(z_s)}{\sqrt{\varepsilon}} \int \frac{1}{e^z} \left(\frac{1}{2} f''(z_s) y^2 + \frac{\varepsilon}{6} f''(z_s) y^3 + \frac{\varepsilon}{24} f''(z_s) y^4 + \cdots \right) \, dy
\]

In general, can't do an integral that involves some cubic or quartic polynomial in \(y \). But, because of our scaling, we see that over the region of interest, these terms are small, so we expand them in power series in \(y \).

\[
\varepsilon^{\frac{1}{6}} f''(z_s) y^3 = 1 + \frac{\varepsilon}{6} f''(z_s) y^3 + \frac{\varepsilon}{72} f''''(z_s) y^6 + \cdots
\]

\[
\varepsilon^{\frac{1}{24}} f^{(4)}(z_s) y^4 = 1 + \frac{\varepsilon}{24} f^{(4)}(z_s) y^4 + \cdots
\]

Now, the most important feature of this calculation is that all odd powers of \(y \) will vanish on integration.
But note: odd powers of y are the only ones involving half integral powers of ϵ. So you get a power series in ϵ, involving only integral powers. The coefficients can all be evaluated in terms of Γ for:

$$\int_{-\infty}^{\infty} dy \ y^{2n} e^{-\alpha y^2}.$$

Anyway, the most important conclusion for us is,

$$\int_{\epsilon} d\epsilon \ e^{\frac{f(\epsilon)}{\epsilon}} = \sum_{5} \sqrt{\frac{2\pi \epsilon}{-f''(\epsilon)}} e^{f(\epsilon) / \epsilon} \left[1 + O(\epsilon) \right].$$

Notice what this does in WKB theory, where we identify ϵ with h. SPA gives answer valid to within $O(h)$ corrections.

Mention: Series not converged.
Finally, there's one more important case, namely when you have an integral,

\[\int \frac{f(z)}{\epsilon} \, \xi \, A(z) \, e \]

Again, you find saddles of \(f(z) \), expand everything about it, including \(A \).

\[L_{1} A(z) = A(z_{3} + \epsilon \xi y) \]

\[= A(z_{3}) + \epsilon \xi A'(z_{3}) y + \frac{\epsilon^{2}}{2} A''(z_{3}) y^{2} + \ldots \]

This shows 1st term again cancels, and 2nd term causes corrections only at \(O(\epsilon) \). Therefore,

\[\int \frac{f(z)}{\epsilon} \, \xi \, A(z) \, e = \sum s \sqrt{-f''(z_{3})} \, A(z_{3}) \, e \left(1 + O(\epsilon) \right) \]

Ok, now let's go through an important example of the SPA.

This is the Airy fn. In order to motivate this with a physical example, let's consider the QM problem of a particle in a uniform gravitational field.

\[H \psi = E \psi \quad \quad H = \frac{p^{2}}{2m} + mgx. \]

\[-\frac{\hbar^{2}}{2m} \frac{d^{2} \psi}{dx^{2}} + (mgx - E) \psi = 0. \]
First we scale this to get rid of the physical constants.

Let \(x = x_0 + a z \). Do a linear transform.

\[
x_0 = \frac{E}{m g},
\]

\[
a = \left(\frac{\hbar^2}{2m^2 g} \right)^{1/3}
\]

Sketch what you expect the solution to look like.

\[
\frac{d^2 \psi}{dz^2} - z \psi = 0. \quad \text{This is std. form for Airy's eqn. and general solution is}
\]

\[\psi = a \text{Ai}(z) + b \text{Bi}(z).\]

It's fairly easy to get an integral representation for \(\text{Ai}(z) \).

Just consider FT of \(\psi \), like going to momentum space.

\[
\psi(k) = \int dx \, e^{-ikx} \psi(x).
\]

\[-k^2 \psi - i\frac{d\psi}{dk} = 0. \quad \frac{d\psi}{dk} = ik^2 \psi
\]

\[
\psi(k) = ce^{ik^{3/3}}
\]

\[
\psi(z) = \left[\frac{1}{2\pi} \int_{-\infty}^{\infty} dk \, e^{i(kz + k^{3/3})} \right] = \text{Ai}(z)
\]
what happened to Bi(\(\tilde{z}\))? Only have a 1st order ODE in \(k\)-space, so only got one lin. indep. soln.

Answer is, Bi(\(\tilde{z}\)) is also given by this integral, but with a different contour of integr.

So let's evaluate this integral by SPA. Note the change of notation — var. of integr. is now \(k\), not \(z\); \(z\) is merely a parameter of integral. So, we'll be doing contours in \(k\)-plane.

To begin, let's take \(z\) to be positive.

\[z = \text{real, pos.} \]

\[\int dk \in C, \quad f(k) = i \left(k^2 + k^3/3 \right). \]

First find the saddles. \(f'(k) = i \left(z + k^2 \right) = 0, \)

\[k_s = \pm i \sqrt{z} \]

2 saddles, both on Im axis.

\[\lim k \to \pm \frac{\pi}{2} \]

\[\text{Re}(k) \]

\[\text{Im}(k) \]

\[R = -\pi/6 \]

\[R = 5\pi/6 \]
Now let's get an idea of the range and valley structure of the integrand. First look at large k.

\[\text{large } k, \quad f(k) \sim \frac{i k^3}{3} = \frac{e^{3i\theta}}{3}, \quad \text{(large } k). \]

Let $k = r e^{i\theta}$. Observe $\lim_{k \to \infty} f(k) \to \infty$, but to distinguish range, valley, need sign.

\[\text{Re } f(k) = \frac{1}{3} r^3 \cos(3\theta + \pi/2). \]

So, if $\cos > 0$, goes to $+\infty$; range.

< 0, goes to $-\infty$; valley.

\[\cos(3\theta + \pi/2) = \begin{cases} +1 & \text{Range} \\ -1 & \text{Valley} \end{cases} \]

Range: $3\theta + \pi/2 = 0, 2\pi, 4\pi, \ldots$

$3\theta = -\pi/2, \frac{3\pi}{2}, \frac{7\pi}{2}$

$\theta = -\pi/6, \frac{\pi}{2}, \frac{7\pi}{6}, \ldots$

Valley, $3\theta + \pi/2 = \pi, 3\pi, 5\pi$

$\theta = \frac{\pi}{6}, \frac{5\pi}{6}, \frac{3\pi}{2}, \ldots$
Now, these are only the asymptotic ranges and valleys, they are distorted near the origin by the term kZ.

So let's look at what happens in neighborhood of saddle. Look at upper saddle first.

\[k_s = +i\sqrt{Z}. \]

Expand $f(z)$ about this,

\[f(z) = i \left(kz + \frac{k^3}{3} \right) \]
\[f'(z) = i \left(z^2 + k^2 \right) \]
\[f''(z) = 2i \frac{z}{k} \]

\[f(k_s) = i \left[(i\sqrt{Z})(\sqrt{Z}) + \frac{1}{3} (i\sqrt{Z})^3 \right] = -\frac{2}{3} i \sqrt{Z}^{3/2}. \]

\[f'(k_s) = 0 \]
\[f''(k_s) = -2i\sqrt{Z}. \]

So, \[f(z) \approx -\frac{2}{3} i \sqrt{Z}^{3/2} - \sqrt{Z} (k - k_s)^2. \]

Now find directions of steepest ascent, descent contours.

From last time,

\[W_+ = \sqrt{\frac{|f''(z_s)|}{f'(z_s)}} \quad \sigma = \sqrt{-1} = \pm i \]
\[W_- = \sqrt{\frac{|f''(z_s)|}{-f'(z_s)}} = \sqrt{1} = \pm 1. \]
Do this with other saddle, you get \(W_+ = \pm 1 \)
\(W_- = \pm i \)

Now you can just guess where the steepest descent contours go.

And you see, our original contour can be distorted to go over upper saddle, but not lower one, with

\[
W_- = +1
\]

Therefore

\[
\frac{1}{2\pi} \int_{-\infty}^{+\infty} \frac{e^{i(kz + k^3/3)}}{-\infty} = \frac{1}{2\pi} \sqrt{\frac{2\pi}{2 \sqrt{z}}} e^{-\frac{2}{3} z^{3/2}}
\]

Or

\[
Ai(z) \approx \frac{1}{4\pi^{1/4}} e^{-\frac{2}{3} z^{3/2}} z \text{ real, } > 0
\]

A+S, Eq. 10.4.59.
Ok, now let's take another case, where z is real and negative.

Now we find,

$$k_s = \pm \sqrt{-z} = \text{real}$$

Take $k_s = +\sqrt{-z}$ further.

$$f(k_s) = \mp \frac{2}{3} i (-z)^{3/2}$$

$$f'(k_s) = 0$$

$$f''(k_s) = \pm 2 i \sqrt{-z}$$

$$W_+ = \sqrt{\frac{|f''(k_s)|}{f''(k_s)}} = \frac{1}{\sqrt{i}} = \pm e^{-i\pi/4} \quad \text{(Right saddle)}$$

$$W_- \text{ must be orthogonal} = \pm e^{+i\pi/4}$$

Similarly for other case. Sketch in ranges, markers.

Now contour passes over both saddles.
So,

\[\frac{1}{2\pi} \int \frac{dk}{k} e^{i(2\pi kz + k^{3/2})} = \frac{1}{2\pi} \left\{ e^{\frac{i\pi}{4}} \sqrt{\frac{2\pi}{2\sqrt{1 - z^2}}} e^{\frac{2}{3}i(-z)^{3/2}} \right. \]

[Diagram of a function labeled \(A_i(z) \).]

\[\frac{1}{\sqrt{\pi}} \frac{1}{(-z)^{1/4}} \cos \left[\frac{2}{3}(-z)^{3/2} - \frac{i\pi}{4} \right] = A_i(z) \quad \text{z real, <0.} \]

Case \(z \to 0 \),

Analytic Contin.